ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Scale Learning with Less RAM via Randomization

41   0   0.0 ( 0 )
 نشر من قبل Hugh Brendan McMahan
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We reduce the memory footprint of popular large-scale online learning methods by projecting our weight vector onto a coarse discrete set using randomized rounding. Compared to standard 32-bit float encodings, this reduces RAM usage by more than 50% during training and by up to 95% when making predictions from a fixed model, with almost no loss in accuracy. We also show that randomized counting can be used to implement per-coordinate learning rates, improving model quality with little additional RAM. We prove these memory-saving methods achieve regret guarantees similar to their exact variants. Empirical evaluation confirms excellent performance, dominating standard approaches across memory versus accuracy tradeoffs.

قيم البحث

اقرأ أيضاً

365 - Da Yu , Huishuai Zhang , Wei Chen 2021
We propose a reparametrization scheme to address the challenges of applying differentially private SGD on large neural networks, which are 1) the huge memory cost of storing individual gradients, 2) the added noise suffering notorious dimensional dep endence. Specifically, we reparametrize each weight matrix with two emph{gradient-carrier} matrices of small dimension and a emph{residual weight} matrix. We argue that such reparametrization keeps the forward/backward process unchanged while enabling us to compute the projected gradient without computing the gradient itself. To learn with differential privacy, we design emph{reparametrized gradient perturbation (RGP)} that perturbs the gradients on gradient-carrier matrices and reconstructs an update for the original weight from the noisy gradients. Importantly, we use historical updates to find the gradient-carrier matrices, whose optimality is rigorously justified under linear regression and empirically verified with deep learning tasks. RGP significantly reduces the memory cost and improves the utility. For example, we are the first able to apply differential privacy on the BERT model and achieve an average accuracy of $83.9%$ on four downstream tasks with $epsilon=8$, which is within $5%$ loss compared to the non-private baseline but enjoys much lower privacy leakage risk.
On April 13th, 2019, OpenAI Five became the first AI system to defeat the world champions at an esports game. The game of Dota 2 presents novel challenges for AI systems such as long time horizons, imperfect information, and complex, continuous state -action spaces, all challenges which will become increasingly central to more capable AI systems. OpenAI Five leveraged existing reinforcement learning techniques, scaled to learn from batches of approximately 2 million frames every 2 seconds. We developed a distributed training system and tools for continual training which allowed us to train OpenAI Five for 10 months. By defeating the Dota 2 world champion (Team OG), OpenAI Five demonstrates that self-play reinforcement learning can achieve superhuman performance on a difficult task.
Producing agents that can generalize to a wide range of visually different environments is a significant challenge in reinforcement learning. One method for overcoming this issue is visual domain randomization, whereby at the start of each training e pisode some visual aspects of the environment are randomized so that the agent is exposed to many possible variations. However, domain randomization is highly inefficient and may lead to policies with high variance across domains. Instead, we propose a regularization method whereby the agent is only trained on one variation of the environment, and its learned state representations are regularized during training to be invariant across domains. We conduct experiments that demonstrate that our technique leads to more efficient and robust learning than standard domain randomization, while achieving equal generalization scores.
There has been an increased interest in discovering heuristics for combinatorial problems on graphs through machine learning. While existing techniques have primarily focused on obtaining high-quality solutions, scalability to billion-sized graphs ha s not been adequately addressed. In addition, the impact of budget-constraint, which is necessary for many practical scenarios, remains to be studied. In this paper, we propose a framework called GCOMB to bridge these gaps. GCOMB trains a Graph Convolutional Network (GCN) using a novel probabilistic greedy mechanism to predict the quality of a node. To further facilitate the combinatorial nature of the problem, GCOMB utilizes a Q-learning framework, which is made efficient through importance sampling. We perform extensive experiments on real graphs to benchmark the efficiency and efficacy of GCOMB. Our results establish that GCOMB is 100 times faster and marginally better in quality than state-of-the-art algorithms for learning combinatorial algorithms. Additionally, a case-study on the practical combinatorial problem of Influence Maximization (IM) shows GCOMB is 150 times faster than the specialized IM algorithm IMM with similar quality.
Emerging cross-device artificial intelligence (AI) applications require a transition from conventional centralized learning systems towards large-scale distributed AI systems that can collaboratively perform complex learning tasks. In this regard, de mocratized learning (Dem-AI) (Minh et al. 2020) lays out a holistic philosophy with underlying principles for building large-scale distributed and democratized machine learning systems. The outlined principles are meant to provide a generalization of distributed learning that goes beyond existing mechanisms such as federated learning. Inspired from this philosophy, a novel distributed learning approach is proposed in this paper. The approach consists of a self-organizing hierarchical structuring mechanism based on agglomerative clustering, hierarchical generalization, and corresponding learning mechanism. Subsequently, a hierarchical generalized learning problem in a recursive form is formulated and shown to be approximately solved using the solutions of distributed personalized learning problems and hierarchical generalized averaging mechanism. To that end, a distributed learning algorithm, namely DemLearn and its variant, DemLearn-P is proposed. Extensive experiments on benchmark MNIST and Fashion-MNIST datasets show that proposed algorithms demonstrate better results in the generalization performance of learning model at agents compared to the conventional FL algorithms. Detailed analysis provides useful configurations to further tune up both the generalization and specialization performance of the learning models in Dem-AI systems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا