ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Minkowski Functionals and Bispectrum Constraints on Non-Gaussianity in the CMB

93   0   0.0 ( 0 )
 نشر من قبل Wenjuan Fang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two of the most commonly used tools to constrain the primordial non-Gaussianity are the bispectrum and the Minkowski functionals of CMB temperature anisotropies. These two measures of non-Gaussianity in principle provide distinct (though correlated) information, but in the past constraints from them have only been loosely compared, and not statistically combined. In this work we evaluate, for the first time, the covariance matrix between the local non-Gaussianity coefficient fnl estimated through the bispectrum and Minkowski functionals. We find that the estimators are positively correlated, with corerlation coefficient r ~ 0.3. Using the WMAP7 data to combine the two measures and accounting for the point-source systematics, we find the combined constraint fnl=37+/-28, which has a ~20% smaller error than either of the individual constraints.


قيم البحث

اقرأ أيضاً

We use Minkowski Functionals (MF) to constrain a primordial non-Gaussian contribution to the CMB intensity field as observed in the 150 GHz and 145 GHz BOOMERanG maps from the 1998 and 2003 flights, respectively, performing for the first time a joint analysis of the two datasets. A perturbative expansion of the MF formulae in the limit of a weakly non-Gaussian field yields analytical formulae, derived by Hikage et al. (2006), which can be used to constrain the coupling parameter f_NL without the need for non-Gaussian simulations. We find -1020<f_NL<390 at 95% CL, significantly improving the previous constraints by De Troia et al. (2007) on the BOOMERanG 2003 dataset. These are the best f_NL limits to date for suborbital probes.
We present a new harmonic-domain approach for extracting morphological information, in the form of Minkowski Functionals (MFs), from weak lensing (WL) convergence maps. Using a perturbative expansion of the MFs, which is expected to be valid for the range of angular scales probed by most current weak-lensing surveys, we show that the study of three generalized skewness parameters is equivalent to the study of the three MFs defined in two dimensions. We then extend these skewness parameters to three associated skew-spectra which carry more information about the convergence bispectrum than their one-point counterparts. We discuss various issues such as noise and incomplete sky coverage in the context of estimation of these skew-spectra from realistic data. Our technique provides an alternative to the pixel-space approaches typically used in the estimation of MFs, and it can be particularly useful in the presence of masks with non-trivial topology. Analytical modeling of weak lensing statistics relies on an accurate modeling of the statistics of underlying density distribution. We apply three different formalisms to model the underlying dark-matter bispectrum: the hierarchical ansatz, halo model and a fitting function based on numerical simulations; MFs resulting from each of these formalisms are computed and compared. We investigate the extent to witch late-time gravity-induced non-Gaussianity (to which weak lensing is primarily sensitive) can be separated from primordial non-Gaussianity and how this separation depends on source redshift and angular scale.
We describe the details of the binned bispectrum estimator as used for the official 2013 and 2015 analyses of the temperature and polarization CMB maps from the ESA Planck satellite. The defining aspect of this estimator is the determination of a map bispectrum (3-point correlator) that has been binned in harmonic space. For a parametric determination of the non-Gaussianity in the map (the so-called fNL parameters), one takes the inner product of this binned bispectrum with theoretically motivated templates. However, as a complementary approach one can also smooth the binned bispectrum using a variable smoothing scale in order to suppress noise and make coherent features stand out above the noise. This allows one to look in a model-independent way for any statistically significant bispectral signal. This approach is useful for characterizing the bispectral shape of the galactic foreground emission, for which a theoretical prediction of the bispectral anisotropy is lacking, and for detecting a serendipitous primordial signal, for which a theoretical template has not yet been put forth. Both the template-based and the non-parametric approaches are described in this paper.
Next-generation galaxy and 21cm intensity mapping surveys will rely on a combination of the power spectrum and bispectrum for high-precision measurements of primordial non-Gaussianity. In turn, these measurements will allow us to distinguish between various models of inflation. However, precision observations require theoretical precision at least at the same level. We extend the theoretical understanding of the galaxy bispectrum by incorporating a consistent general relativistic model of galaxy bias at second order, in the presence of local primordial non-Gaussianity. The influence of primordial non-Gaussianity on the bispectrum extends beyond the galaxy bias and the dark matter density, due to redshift-space effects. The standard redshift-space distortions at first and second order produce a well-known primordial non-Gaussian imprint on the bispectrum. Relativistic corrections to redshift-space distortions generate new contributions to this primordial non-Gaussian signal, arising from: (1)~a coupling of first-order scale-dependent bias with first-order relativistic observational effects, and (2)~linearly evolved non-Gaussianity in the second-order velocity and metric potentials which appear in relativistic observational effects. Our analysis allows for a consistent separation of the relativistic `contamination from the primordial signal, in order to avoid biasing the measurements by using an incorrect theoretical model. We show that the bias from using a Newtonian analysis of the squeezed bispectrum could be $Delta fnlsim 5$ for a Stage IV H$alpha$ survey.
We perform a joint analysis of the power spectrum and the bispectrum of the CMB temperature and polarization anisotropies to improve the constraints on isocurvature modes. We construct joint likelihoods, both for the existing Planck data, and to make forecasts for the future LiteBIRD and CMB-S4 experiments. We assume a general two-field inflation model with five free parameters, leading to one isocurvature mode (which can be CDM density, neutrino density or neutrino velocity) arbitrarily correlated with the adiabatic mode. We theoretically assess in which cases (of detecting and/or fixing parameters) improvements can be expected, to guide our subsequent numerical analyses. We find that for Planck, which detected neither isocurvature modes nor primordial non-Gaussianity, the joint analysis does not improve the constraints in the general case. However, if we fix additional parameters in the model, the improvements can be highly significant depending on the chosen parameter values. For LiteBIRD+CMB-S4 we study in which regions of parameter space compatible with the Planck results the joint analysis will improve the constraints or the significance of a detection. We find that, while for CDM isocurvature this region is very small, for the neutrino isocurvature modes it is much larger. In particular for neutrino velocity it can be about half of the Planck-allowed region, where the joint analysis reduces the isocurvature error bars by up to 70%. In addition the joint analysis can also improve the error bars of some of the standard cosmological parameters, by up to 30% for $theta_{MC}$ for example, by breaking the degeneracies with the correlation parameter between adiabatic and isocurvature modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا