ﻻ يوجد ملخص باللغة العربية
Efficient and precise prediction of plasticity by data-driven models relies on appropriate data preparation and a well-designed model. Here we introduce an unsupervised machine learning-based data preparation method to maximize the trainability of crystal orientation evolution data during deformation. For Taylor model crystal plasticity data, the preconditioning procedure improves the test score of an artificial neural network from 0.831 to 0.999, while decreasing the training iterations by an order of magnitude. The efficacy of the approach was further improved with a recurrent neural network. Electron backscattered (EBSD) lab measurements of crystal rotation during rolling were compared with the results of the surrogate model, and despite error introduced by Taylor model simplifying assumptions, very reasonable agreement between the surrogate model and experiment was observed. Our method is foundational for further data-driven studies, enabling the efficient and precise prediction of texture evolution from experimental and simulated crystal plasticity results.
Crystal structure prediction is one of the major unsolved problems in materials science. Traditionally, this problem is formulated as a global optimization problem for which global search algorithms are combined with first principle free energy calcu
The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the m
In their Letter, Haziot et al. [Phys. Rev. Lett. 110 (2013) 035301] report a novel phenomenon of giant plasticity for hcp Helium-4 quantum crystals. They assert that Helium-4 exhibits mechanical properties not found in classical plasticity theory. Sp
The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal (PFC) model. In the model, dislocations are naturally created, without any textit{ad hoc} creation rules, by applying a shearing force to the perf
Plastic deformation in polycrystals is governed by the interplay between intra-granular slip and grain boundary-mediated plasticity. However, while the role played by bulk dislocations is relatively well-understood, the contribution of grain boundari