ﻻ يوجد ملخص باللغة العربية
We investigate the performance of a streamlined version of Shors algorithm in which the quantum Fourier transform is replaced by a banded version that for each qubit retains only coupling to its $b$ nearest neighbors. Defining the performance $P(n,b)$ of the $n$-qubit algorithm for bandwidth $b$ as the ratio of the success rates of Shors algorithm equipped with the banded and the full bandwidth ($b=n-1
Quantum computers will allow calculations beyond existing classical computers. However, current technology is still too noisy and imperfect to construct a universal digital quantum computer with quantum error correction. Inspired by the evolution of
Shors powerful quantum algorithm for factoring represents a major challenge in quantum computation and its full realization will have a large impact on modern cryptography. Here we implement a compiled version of Shors algorithm in a photonic system
The Quantum Fourier Transformation ($QFT$) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize $QFT$ to enhance the perf
Quantum Fourier Transform (QFT) plays a principal role in the development of efficient quantum algorithms. Since the number of quantum bits that can currently built is limited, while many quantum technologies are inherently three- (or more) valued, w
The quantum multicomputer consists of a large number of small nodes and a qubus interconnect for creating entangled state between the nodes. The primary metric chosen is the performance of such a system on Shors algorithm for factoring large numbers: