ﻻ يوجد ملخص باللغة العربية
Quantum computers will allow calculations beyond existing classical computers. However, current technology is still too noisy and imperfect to construct a universal digital quantum computer with quantum error correction. Inspired by the evolution of classical computation, an alternative paradigm merging the flexibility of digital quantum computation with the robustness of analog quantum simulation has emerged. This universal paradigm is known as digital-analog quantum computing. Here, we introduce an efficient digital-analog quantum algorithm to compute the quantum Fourier transform, a subroutine widely employed in several relevant quantum algorithms. We show that, under reasonable assumptions about noise models, the fidelity of the quantum Fourier transformation improves considerably using this approach when the number of qubits involved grows. This suggests that, in the Noisy Intermediate-Scale Quantum (NISQ) era, hybrid protocols combining digital and analog quantum computing could be a sensible approach to reach useful quantum supremacy.
We consider the problem of mapping digital data encoded on a quantum register to analog amplitudes in parallel. It is shown to be unlikely that a fully unitary polynomial-time quantum algorithm exists for this problem; NP becomes a subset of BQP if i
The Quantum Fourier Transformation ($QFT$) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize $QFT$ to enhance the perf
We investigate the performance of a streamlined version of Shors algorithm in which the quantum Fourier transform is replaced by a banded version that for each qubit retains only coupling to its $b$ nearest neighbors. Defining the performance $P(n,b)
Digital quantum computing paradigm offers highly-desirable features such as universality, scalability, and quantum error correction. However, physical resource requirements to implement useful error-corrected quantum algorithms are prohibitive in the
The method of noisy multiqubit quantum circuits modeling is proposed. The analytical formulas for the dependence of quantum algorithms accuracy on qubits count and noise level are obtained for Grover algorithm and quantum Fourier transform. It is sho