ترغب بنشر مسار تعليمي؟ اضغط هنا

Dielectric Anomaly in the Quasi-One-Dimensional Frustrated Spin-1/2 System Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$ (M=Ni and Zn)

203   0   0.0 ( 0 )
 نشر من قبل Yukio Yasui
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dielectric and magnetic properties have been studied for poly-crystalline samples of quasi-one-dimensional frustrated spin-1/2 system Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$(M=Ni and Zn) which does not exhibit a three-dimensional magnetic transition due to quantum spin fluctuation and low dimensionality. A broad peak in the magnetic susceptibility - temperature curves originated from a short range helical ordering at low temperature is suppressed by the Ni and Zn substitution for Cu sites. The capacitance is found to anomalously increase with decreasing T below ~50 K, which is also suppressed by the impurity doping. The behavior of the anomalous capacitance component is found to be strongly connected with that of the magnetic susceptibility for Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$ which indicates that the low-temperature dielectric response is driven by the magnetism.



قيم البحث

اقرأ أيضاً

Single crystal samples of the frustrated quasi one-dimensional quantum magnet Rb$_{2}$Cu$_{2}$Mo$_{3}$O$_{12}$ are investigated by magnetic, thermodynamic, and electron spin resonance (ESR) measurements. Quantum phase transitions between the gapped, magnetically ordered and fully saturated phases are observed. Surprisingly, the former has a distinctive three-dimensional character, while the latter is dominated by one-dimensional quantum spin fluctuations. The entire $H$-$T$ phase diagram is mapped out and found to be substantially anisotropic. In particular, the lower critical fields differ by over 50% depending on the direction of applied field, while the upper ones are almost isotropic, as is the magnetization above saturation. The ESR spectra are strongly dependent on field orientation and point to a helical structure with a rigidly defined spin rotation plane.
We have investigated magnetic properties of Rb$_2$Cu$_2$Mo$_3$O$_{12}$ powder. Temperature dependence of magnetic susceptibility and magnetic-field dependence of magnetization have shown that this cuprate is a model compound of a one-dimensional spin -1/2 Heisenberg system with ferromagnetic first-nearest-neighbor (1NN) and antiferromagnetic second-nearest-neighbor (2NN) competing interactions (competing system). Values of the 1NN and 2NN interactions are estimated as $J_1 = -138$ K and $J_2 = 51$ K ($alpha equiv J_2 / J_1 = -0.37$). This value of $alpha$ suggests that the ground state is a spin-singlet incommensurate state. In spite of relatively large $J_1$ and $J_2$, no magnetic phase transition appears down to 2 K, while an antiferromagnetic transition occurs in other model compounds of the competing system with ferromagnetic 1NN interaction. For that reason, Rb$_2$Cu$_2$Mo$_3$O$_{12}$ is an ideal model compound to study properties of the incommensurate ground state that are unconfirmed experimentally.
534 - H. Kuroe , K. Aoki , T. Sato 2013
We present the muon spin relaxation/rotation spectra in the multiferroic compound (Cu,Zn)$_{3}$Mo$_{2}$O$_{9}$. The parent material Cu$_{3}$Mo$_{2}$O$_{9}$ has a multiferroic phase below $T_{rm N}$ = 8.0 K, where the canted antiferromagnetism and the ferroelectricity coexist. The asymmetry time spectra taken at RIKEN-RAL pulsed muon facility show a drastic change at $T_{rm N}$. At low temperatures the weakly beating oscillation caused by the static internal magnetic fields in the antiferromagnetic phase was observed in Cu$_{3}$Mo$_{2}$O$_{9}$ and the lightly ($0.5%$) Zn-doped sample. From the fitting of the oscillating term, we obtain the order parameter in these samples: ferromagnetic moment in two sublattices of antiferromagnet. In the heavily ($5.0%$) Zn-doped sample, the muon-spin oscillation is rapidly damped. The frequency-domain spectrum of this sample suggests a formation of magnetic superstructure.
Ba$_3$Mn$_2$O$_8$ is a geometrically frustrated spin dimer compound. We investigate the effect of site disorder on the zero field phase diagram of this material by considering the solid solution Ba$_{3}$(Mn$_{1-x}$V$_{x}$)$_{2}$O$_{8}$, where nonmagn etic V$^{5+}$ ions partially substitute magnetic Mn$^{5+}$ ions. This substitution results in unpaired $S=1$ moments for half-substituted dimers, which are ungapped and therefore susceptible to types of magnetic order not present in the parent compound. AC susceptibility measurements of compositions between $x=0.046$ and $x=0.84$ show a sharp frequency- and composition-dependent kink at temperatures below 210mK, suggesting that unpaired spins form a spin glass. The case for a glassy state is made clearer by the absence of any sharp features in the specific heat. However, Ba$_{3}$(Mn$_{1-x}$V$_{x}$)$_{2}$O$_{8}$ is not a paradigmatic spin glass. Whereas both the freezing temperature and the Weiss temperature (determined from susceptibility above 1K) vary strongly as a function of composition, the heat capacity per unpaired spin is found to be insensitive (above the glass transition) to the density of unpaired spins for the broad regime $0.18leq x leq 0.84$. This surprising result is consistent with a scenario in which nearest-neighbor unpaired spins form local, possibly fluctuating, spin-singlets prior to the eventual spin freezing. The spin glass state is only found for temperatures below the energy scale of single-ion anisotropy, suggestive this plays a significant role in determining the eventual ground state. Possible ground states in the dilute limit ($x < 0.04$ and $x > 0.9$) are also discussed.
We investigated the magnetoelastic properties of the quasi-one-dimensional spin-1/2 frustrated magnet LiCuVO$_4$. Longitudinal-magnetostriction experiments were performed at 1.5 K in high magnetic fields of up to 60 T applied along the $b$ axis, i.e. , the spin-chain direction. The magnetostriction data qualitatively resemble the magnetization results, and saturate at $H_{text{sat}} approx 54$ T, with a relative change in sample length of $Delta L/L approx 1.8times10^{-4}$. Remarkably, both the magnetostriction and the magnetization evolve gradually between $H_{text{c3}} approx 48$ T and $H_{text{sat}}$, indicating that the two quantities consistently detect the spin-nematic phase just below the saturation. Numerical analyses for a weakly coupled spin-chain model reveal that the observed magnetostriction can overall be understood within an exchange-striction mechanism. Small deviations found may indicate nontrivial changes in local correlations associated with the field-induced phase transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا