ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoelastic study on the frustrated quasi-one-dimensional spin-1/2 magnet LiCuVO$_4$

83   0   0.0 ( 0 )
 نشر من قبل Atsuhiko Miyata
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the magnetoelastic properties of the quasi-one-dimensional spin-1/2 frustrated magnet LiCuVO$_4$. Longitudinal-magnetostriction experiments were performed at 1.5 K in high magnetic fields of up to 60 T applied along the $b$ axis, i.e., the spin-chain direction. The magnetostriction data qualitatively resemble the magnetization results, and saturate at $H_{text{sat}} approx 54$ T, with a relative change in sample length of $Delta L/L approx 1.8times10^{-4}$. Remarkably, both the magnetostriction and the magnetization evolve gradually between $H_{text{c3}} approx 48$ T and $H_{text{sat}}$, indicating that the two quantities consistently detect the spin-nematic phase just below the saturation. Numerical analyses for a weakly coupled spin-chain model reveal that the observed magnetostriction can overall be understood within an exchange-striction mechanism. Small deviations found may indicate nontrivial changes in local correlations associated with the field-induced phase transitions.

قيم البحث

اقرأ أيضاً

We report on a heat capacity study of high quality single crystal samples of lcvo -- a frustrated spin $S=1/2$ chain system -- in magnetic field amounting to 3/4 of the saturation field. At low fields up to about 7~T, a linear temperature dependence of the specific heat, $C_ppropto T$, resulting from 1D magnetic correlations in the spin chains is followed upon cooling by a sharp lambda anomaly of the transition into a 3D helical phase with $C_ppropto T^3$ behavior at low temperature. The transition from a spin liquid into a spin-modulated (SM) phase at higher fields occurs via a hump-like anomaly which, as the temperature decreases further turns into a $C_ppropto T^2$ law distinctive for a quasi-2D system. We suggest an explanation for how nonmagnetic defects in the Cu$^{2+}$ chains can suppress 3D long-range ordering in the SM phase and leave it undisturbed in a helical phase.
We study electronic and magnetic properties of the quasi-one-dimensional spin-1/2 magnet Ba3Cu3Sc4O12 with a distinct orthogonal connectivity of CuO4 plaquettes. An effective low-energy model taking into account spin-orbit coupling was constructed by means of first-principles calculations. On this basis a complete microscopic magnetic model of Ba3Cu3Sc4O12, including symmetric and antisymmetric anisotropic exchange interactions, is derived. The anisotropic exchanges are obtained from a distinct first-principles numerical scheme combining, on one hand, the local density approximation taking into account spin-orbit coupling, and, on the other hand, projection procedure along with the microscopic theory by Toru Moriya. The resulting tensors of the symmetric anisotropy favor collinear magnetic order along the structural chains with the leading ferromagnetic coupling J1 = -9.88 meV. The interchain interactions J8 = 0.21 meV and J5 = 0.093 meV are antiferromagnetic. Quantum Monte Carlo simulations demonstrated that the proposed model reproduces the experimental Neel temperature, magnetization and magnetic susceptibility data. The modeling of neutron diffraction data reveals an important role of the covalent Cu-O bonding in Ba3Cu3Sc4O12.
We study dynamical properties of the anisotropic triangular quantum antiferromagnet Cs_2CuCl_4. Inelastic neutron scattering measurements have established that the dynamical spin correlations cannot be understood within a linear spin wave analysis. W e go beyond linear spin wave theory by taking interactions between magnons into account in a 1/S expansion. We determine the dynamical structure factor and carry out extensive comparisons with experimental data. We find that compared to linear spin wave theory a significant fraction of the scattering intensity is shifted to higher energies and strong scattering continua are present. However, the 1/S expansion fails to account for the experimentally observed large quantum renormalization of the exchange energies.
We study field induced quantum phase in weakly-coupled ferromagnetic frustrated chain LiCuVO$_4$ by neutron diffraction technique. A new incommensurate magnetic peak is observed at $H ge 8.5$ T. The field dependent propagation vector is identified wi th the spin density wave correlation in the theoretically predicted magnetic quadrupole order. Quantum fluctuation, geometrical frustration, and interchain interaction induce the exotic spin density wave long-range order in the insulating magnet.
We study the magnetic excitations on top of the plateaux states recently discovered in spin-Peierls systems in a magnetic field. We show by means of extensive density matrix renormalization group (DMRG) computations and an analytic approach that one single spin-flip on top of $M=1-frac2N$ ($N=3,4,...$) plateau decays into $N$ elementary excitations each carrying a fraction $frac1N$ of the spin. This fractionalization goes beyond the well-known decay of one magnon into two spinons taking place on top of the M=0 plateau. Concentrating on the $frac13$ plateau (N=3) we unravel the microscopic structure of the domain walls which carry fractional spin-$frac13$, both from theory and numerics. These excitations are shown to be noninteracting and should be observable in x-ray and nuclear magnetic resonance experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا