ترغب بنشر مسار تعليمي؟ اضغط هنا

The strong coupling regime of twelve flavors QCD

171   0   0.0 ( 0 )
 نشر من قبل Tiago Nunes da Silva
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We summarize the results recently reported in Ref.[1] [A. Deuzeman, M.P. Lombardo, T. Nunes da Silva and E. Pallante,The bulk transition of QCD with twelve flavors and the role of improvement] for the SU(3) gauge theory with Nf=12 fundamental flavors, and we add some numerical evidence and theoretical discussion. In particular, we study the nature of the bulk transition that separates a chirally broken phase at strong coupling from a chirally restored phase at weak coupling. When a non-improved action is used, a rapid crossover is observed at small bare quark masses. Our results confirm a first order nature for this transition, in agreement with previous results we obtained using an improved action. As shown in Ref.[1], when improvement of the action is used, the transition is preceded by a second rapid crossover at weaker coupling and an exotic phase emerges, where chiral symmetry is not yet broken. This can be explained [1] by the non hermiticity of the improved lattice Transfer matrix, arising from the competition of nearest-neighbor and non-nearest neighbor interactions, the latter introduced by improvement and becoming increasingly relevant at strong coupling and coarse lattices. We further comment on how improvement may generally affect any lattice system at strong coupling, be it graphene or non abelian gauge theories inside or slightly below the conformal window.



قيم البحث

اقرأ أيضاً

We present the computation of invariants that arise in the strong coupling expansion of lattice QCD. These invariants are needed for Monte Carlo simulations of Lattice QCD with staggered fermions in a dual, color singlet representation. This formulat ion is in particular useful to tame the finite density sign problem. The gauge integrals in this limiting case $betarightarrow 0$ are well known, but the gauge integrals needed to study the gauge corrections are more involved. We discuss a method to evaluate such integrals. The phase boundary of lattice QCD for staggered fermions in the $mu_B-T$ plane has been established in the strong coupling limit. We present numerical simulations away from the strong coupling limit, taking into account the higher order gauge corrections via plaquette occupation numbers. This allows to study the nuclear and chiral transition as a function of $beta$.
We study infrared conformality of the twelve-flavor QCD on the lattice. Utilizing the highly improved staggered quarks (HISQ) type action which is useful to study the continuum physics, we analyze the lattice data of the mass and the decay constant o f a pseudoscalar meson and the mass of a vector meson as well at several values of lattice spacing and fermion mass. Our result is consistent with the conformal hypothesis for the mass anomalous dimension $gamma_m sim 0.4-0.5$.
We discuss the QCD phase diagram in the strong coupling limit of lattice QCD by using a new type of mean field coming from the next-to-leading order of the large dimensional expansion. The QCD phase diagram in the strong coupling limit recently obtai ned by using the monomer-dimer-polymer (MDP) algorithm has some differences in the phase boundary shape from that in the mean field results. As one of the origin to explain the difference, we consider another type of auxiliary field, which corresponds to the point-splitting mesonic composite. Fermion determinant with this mean field under the anti-periodic boundary condition gives rise to a term which interpolates the effective potentials in the previously proposed zero and finite temperature mean field treatments. While the shift of the transition temperature at zero chemical potential is in the desirable direction and the phase boundary shape is improved, we find that the effects are too large to be compatible with the MDP simulation results.
Based on lattice simulations using highly improved staggered quarks for twelve-flavor QCD with several bare fermion masses, we observe a flavor-singlet scalar state lighter than the pion in the correlators of fermionic interpolating operators. The sa me state is also investigated using correlators of gluonic interpolating operators. Combined with our previous study, that showed twelve-flavor QCD to be consistent with being in the conformal window, we infer that the lightness of the scalar state is due to infrared conformality. This result shed some light on the possibility of a light composite Higgs boson (technidilaton) in walking technicolor theories.
The delta-regime of QCD is characterised by light quarks in a small spatial box, but a large extent in (Euclidean) time. In this setting a specific variant of chiral perturbation theory - the delta-expansion - applies, based on a quantum mechanical t reatment of the quasi one-dimensional system. In particular, for vanishing quark masses one obtains a residual pion mass M_pi^R, which has been computed to the third order in the delta-expansion. A comparison with numerical measurements of this residual mass allows for a new determination of some Low Energy Constants, which appear in the chiral Lagrangian. We first review the attempts to simulate 2-flavour QCD directly in the delta-regime. This is very tedious, but results compatible with the predictions for M_pi^R have been obtained. Then we show that an extrapolation of pion masses measured in a larger volume towards the delta-regime leads to good agreement with the theoretical predictions. From those results, we also extract a value for the (controversial) sub-leading Low Energy Constant bar l_3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا