ترغب بنشر مسار تعليمي؟ اضغط هنا

Another mean field treatment in the strong coupling limit of lattice QCD

162   0   0.0 ( 0 )
 نشر من قبل Akira Ohnishi
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the QCD phase diagram in the strong coupling limit of lattice QCD by using a new type of mean field coming from the next-to-leading order of the large dimensional expansion. The QCD phase diagram in the strong coupling limit recently obtained by using the monomer-dimer-polymer (MDP) algorithm has some differences in the phase boundary shape from that in the mean field results. As one of the origin to explain the difference, we consider another type of auxiliary field, which corresponds to the point-splitting mesonic composite. Fermion determinant with this mean field under the anti-periodic boundary condition gives rise to a term which interpolates the effective potentials in the previously proposed zero and finite temperature mean field treatments. While the shift of the transition temperature at zero chemical potential is in the desirable direction and the phase boundary shape is improved, we find that the effects are too large to be compatible with the MDP simulation results.



قيم البحث

اقرأ أيضاً

We present results for lattice QCD with staggered fermions in the limit of infinite gauge coupling, obtained from a worm-type Monte Carlo algorithm on a discrete spatial lattice but with continuous Euclidean time. This is obtained by sending both the anisotropy parameter $xi=a_sigma/a_tau$ and the number of time-slices $N_tau$ to infinity, keeping the ratio $aT=xi/Ntau$ fixed. The obvious gain is that no continuum extrapolation $N_tau rightarrow infty$ has to be carried out. Moreover, the algorithm is faster and the sign problem disappears. We derive the continuous time partition function and the corresponding Hamiltonian formulation. We compare our computations with those on discrete lattices and study both zero and finite temperature properties of lattice QCD in this regime.
We report on the first steps of an ongoing project to add gauge observables and gauge corrections to the well-studied strong coupling limit of staggered lattice QCD, which has been shown earlier to be amenable to numerical simulations by the worm alg orithm in the chiral limit and at finite density. Here we show how to evaluate the expectation value of the Polyakov loop in the framework of the strong coupling limit at finite temperature, allowing to study confinement properties along with those of chiral symmetry breaking. We find the Polyakov loop to rise smoothly, thus signalling deconfinement. The non-analytic nature of the chiral phase transition is reflected in the derivative of the Polyakov loop. We also discuss how to construct an effective theory for non-zero lattice coupling, which is valid to $O(beta)$.
Previous extrapolations of lattice QCD results for the nucleon mass to the physically relevant region of small quark masses, using chiral effective field theory, are extended and expanded in several directions. A detailed error analysis is performed. An approach with explicit delta(1232) degrees of freedom is compared to a calculation with only pion and nucleon degrees of freedom. The role of the delta(1232) for the low-energy constants of the latter theory is elucidated. The consistency with the chiral perturbation theory analysis of pion-nucleon scattering data is examined. It is demonstrated that this consistency can indeed be achieved if the delta(1232) dominance of the P-wave pion-nucleon low-energy constant c3 is accounted for. Introduction of the delta(1232) as an explicit propagating degree of freedom is not crucial in order to describe the quark-mass dependence of the nucleon mass, in contrast to the situation with spin observables of the nucleon. The dependence on finite lattice volume is shown to yield valuable additional constraints. What emerges is a consistent and stable extrapolation scheme for pion masses below 0.6 GeV.
Lattice QCD has reached a mature status. State of the art lattice computations include $u,d,s$ (and even the $c$) sea quark effects, together with an estimate of electromagnetic and isospin breaking corrections for hadronic observables. This precise and first principles description of the standard model at low energies allows the determination of multiple quantities that are essential inputs for phenomenology and not accessible to perturbation theory. One of the fundamental parameters that are determined from simulations of lattice QCD is the strong coupling constant, which plays a central role in the quest for precision at the LHC. Lattice calculations currently provide its best determinations, and will play a central role in future phenomenological studies. For this reason we believe that it is timely to provide a pedagogical introduction to the lattice determinations of the strong coupling. Rather than analysing individual studies, the emphasis will be on the methodologies and the systematic errors that arise in these determinations. We hope that these notes will help lattice practitioners, and QCD phenomenologists at large, by providing a self-contained introduction to the methodology and the possible sources of systematic error. The limiting factors in the determination of the strong coupling turn out to be different from the ones that limit other lattice precision observables. We hope to collect enough information here to allow the reader to appreciate the challenges that arise in order to improve further our knowledge of a quantity that is crucial for LHC phenomenology.
The $XiXi$ interaction in the $^1$S$_0$ channel is studied to examine the convergence of the derivative expansion of the non-local HAL QCD potential at the next-to-next-to-leading order (N$^2$LO). We find that (i) the leading order potential from the N$^2$LO analysis gives the scattering phase shifts accurately at low energies, (ii) the full N$^2$LO potential gives only small correction to the phase shifts even at higher energies below the inelastic threshold, and (iii) the potential determined from the wall quark source at the leading order analysis agrees with the one at the N$^2$LO analysis except at short distances, and thus, it gives correct phase shifts at low energies. We also study the possible systematic uncertainties in the HAL QCD potential such as the inelastic state contaminations and the finite volume artifact for the potential and find that they are well under control for this particular system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا