ﻻ يوجد ملخص باللغة العربية
We investigate the behavior of the Ising model on two connected Barabasi-Albert scale-free networks. We extend previous analysis and show that a first order temperature-driven phase transition occurs in such system. The transition between antiparalelly ordered networks to paralelly ordered networks is shown to be discontinuous. We calculate the critical temperature. We confirm the calculations with numeric simulations using Monte-Carlo methods.
We check the existence of a spontaneous magnetisation of Ising and Potts spins on semi-directed Barabasi-Albert networks by Monte Carlo simulations. We verified that the magnetisation for different temperatures $T$ decays after a characteristic time
With up to 7 million spins, the existence of spontaneous magnetization of Ising spins on directed Barabasi-Albert networks is investigated by Monte Carlo simulations. We confirm our earlier result that the magnetization for different temperatures T d
The existence of spontaneous magnetization of Ising spins on directed Barabasi-Albert networks is investigated with seven neighbors, by using Monte Carlo simulations. In large systems we see the magnetization for different temperatures T to decay aft
Networks that have power-law connectivity, commonly referred to as the scale-free networks, are an important class of complex networks. A heterogeneous mean-field approximation has been previously proposed for the Ising model of the Barab{a}si-Albert
We consider two consensus formation models coupled to Barabasi-Albert networks, namely the Majority Vote model and Biswas-Chatterjee-Sen model. Recent works point to a non-universal behavior of the Majority Vote model, where the critical exponents ha