ترغب بنشر مسار تعليمي؟ اضغط هنا

New scientific results with SpIOMM: a testbed for CFHTs imaging Fourier transform spectrometer SITELLE

118   0   0.0 ( 0 )
 نشر من قبل Laurent Drissen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new data obtained with SpIOMM, the imaging Fourier transform spectrometer attached to the 1.6-m telescope of the Observatoire du Mont-Megantic in Quebec. Recent technical and data reduction improvements have significantly increased SpIOMMs capabilities to observe fainter objects or weaker nebular lines, as well as continuum sources and absorption lines, and to increase its modulation efficiency in the near ultraviolet. To illustrate these improvements, we present data on the supernova remnant Cas A, planetary nebulae M27 and M97, the Wolf-Rayet ring nebula M1-67, spiral galaxies M63 and NGC 3344, as well as the interacting pair of galaxies Arp 84.



قيم البحث

اقرأ أيضاً

We present an overview of SITELLE, an Imaging Fourier Transform Spectrometer (iFTS) available at the 3.6-meter Canada-France-Hawaii Telescope. SITELLE is a Michelson-type interferometer able to reconstruct the spectrum of every light source within it s 11 field of view in filter-selected bands of the visible (350 to 900 nm). The spectral resolution can be adjusted up to R = 10 000 and the spatial resolution is seeing-limited and sampled at 0.32 arcsec per pixel. We describe the design of the instrument as well as the data reduction and analysis process. To illustrate SITELLEs capabilities, we present some of the data obtained during and since the August 2015 commissioning run. In particular, we demonstrate its ability to separate the components of the [OII] $lambdalambda$ 3726,29 doublet in Orion and to reach R = 9500 around H-alpha; to detect diffuse emission at a level of 4 x 10e-17 erg/cm2/s/arcsec2; to obtain integrated spectra of stellar absorption lines in galaxies despite the well-known multiplex disadvantage of the iFTS; and to detect emission-line galaxies at different redshifts.
Kinetic inductance in thin film superconductors has been used as the basis for low-temperature, low-noise photon detectors. In particular thin films such as NbTiN, TiN, NbN, the kinetic inductance effect is strongly non-linear in the applied current, which can be utilized to realize novel devices. We present results from transmission lines made with these materials, where DC (current) control is used to modulate the phase velocity thereby enabling an on-chip spectrometer. The utility of such compact spectrometers are discussed, along with their natural connection with parametric amplifiers.
The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We de scribe the calibration process of the FIS-FTS and discuss its accuracy and reliability. The calibration is based on the observational data of bright astronomical sources as well as two instrumental sources. We have compared the FIS-FTS spectra with the spectra obtained from the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO) having a similar spectral coverage. The present calibration method accurately reproduces the spectra of several solar system objects having a reliable spectral model. Under this condition the relative uncertainty of the calibration of the continuum is estimated to be $pm$ 15% for SW, $pm$ 10% for 70-85 cm^(-1) of LW, and $pm$ 20% for 60-70 cm^(-1) of LW; and the absolute uncertainty is estimated to be +35/-55% for SW, +35/-55% for 70-85 cm^(-1) of LW, and +40/-60% for 60-70 cm^(-1) of LW. These values are confirmed by comparison with theoretical models and previous observations by the ISO/LWS.
We have constructed a Fourier-transform spectrometer (FTS) operating between 50 and 330 GHz with minimum volume (355 x260 x64 mm) and weight (13 lbs) while maximizing optical throughput (100 $mathrm{mm}^2$ sr) and optimizing the spectral resolution ( 4 GHz). This FTS is designed as a polarizing Martin-Puplett interferometer with unobstructed input and output in which both input polarizations undergo interference. The instrument construction is simple with mirrors milled on the box walls and one motorized stage as the single moving element. We characterize the performance of the FTS, compare the measurements to an optical simulation, and discuss features that relate to details of the FTS design. The simulation is also used to determine the tolerance of optical alignments for the required specifications. We detail the FTS mechanical design and provide the control software as well as the analysis code online.
We provide a detailed description of the Herschel-SPIRE Fourier Transform Spectrometer (FTS) Spectral Feature Finder (FF). The FF is an automated process designed to extract significant spectral features from SPIRE FTS data products. Optimising the n umber of features found in SPIRE-FTS spectra is challenging. The wide SPIRE-FTS frequency range (447-1568 GHz) leads to many molecular species and atomic fine structure lines falling within the observed bands. As the best spectral resolution of the SPIRE-FTS is ~1.2 GHz, there can be significant line blending, depending on the source type. In order to find, both efficiently and reliably, features in spectra associated with a wide range of sources, the FF iteratively searches for peaks over a number of signal-to-noise ratio (SNR) thresholds. For each threshold, newly identified features are rigorously checked before being added to the fitting model. At the end of each iteration, the FF simultaneously fits the continuum and features found, with the resulting residual spectrum used in the next iteration. The final FF products report the frequency of the features found and the associated SNRs. Line flux determination is not included as part of the FF products, as extracting reliable line flux from SPIRE-FTS data is a complex process that requires careful evaluation and analysis of the spectra on a case-by-case basis. The FF results are 100% complete for features with SNR greater than 10 and 50-70% complete at SNR of 5. The FF code and all FF products are publicly available via the Herschel Science Archive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا