ترغب بنشر مسار تعليمي؟ اضغط هنا

J/$psi$ production at high transverse momenta in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV

145   0   0.0 ( 0 )
 نشر من قبل Zebo Tang
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report $J/psi$ spectra for transverse momenta $p_T$> 5 GeV/$c$ at mid-rapidity in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV.The inclusive $J/psi$ spectrum and the extracted $B$-hadron feed-down are compared to models incorporating different production mechanisms. We observe significant suppression of the $J/psi$ yields for $p_T$> 5 GeV/$c$ in 0-30% Au+Au collisions relative to the p+p yield scaled by the number of binary nucleon-nucleon collisions in Au+Au collisions. In 30-60% collisions, no such suppression is observed.The level of suppression is consistently less than that of high-$p_T$ $pi^{pm}$ and low-$p_T$ $J/psi$.



قيم البحث

اقرأ أيضاً

We report on the measurement of $rm{J}/psi$ production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at $sqrt{s_{NN}}$ = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum $ p_{T}$ spectra in p+p for $p_{T}$ < 4 GeV/c and d+Au collisions for $p_{T}$ < 3 GeV/c are presented. These measurements extend the STAR coverage for $rm{J}/psi$ production in p+p collisions to low $p_{T}$. The $<p_{T}^{2}>$ from the measured $rm{J}/psi$ invariant cross section in p+p and d+Au collisions are evaluated and compared to similar measurements at other collision energies. The nuclear modification factor for $rm{J}/psi$ is extracted as a function of $p_{T}$ and collision centrality in d+Au and compared to model calculations using the modified nuclear Parton Distribution Function and a final-state $rm{J}/psi$ nuclear absorption cross section.
146 - Yichun Xu 2009
We report the transverse momentum (pT) distributions for identified charged pions, protons and anti-protons using events triggered by high deposit energy in the Barrel Electro-Magnetic Calorimeter (BEMC) from p + p collisions at psNN = 200 GeV. The s pectra are measured around mid-rapidity (|y|<0.5) over the range of 3<pT<15 GeV/c with particle identification (PID) by the relativistic ionization energy loss (rdE/dx) in the Time Projection Chamber (TPC) in the Solenoidal Tracker at RHIC (STAR). The charged pion, proton and anti-proton spectra at high pT are compared with published results from minimum bias triggered events and the Next-Leading-Order perturbative quantum chromodynamic (NLO pQCD) calculations (DSS, KKP and AKK 2008). In addition, we present the particle ratios of pi-/pi+, pbar/p, p/pi+ and pbar/pi- in p + p collisions.
We report the measurements of $Sigma (1385)$ and $Lambda (1520)$ production in $p+p$ and $Au+Au$ collisions at $sqrt{s_{NN}} = 200$ GeV from the STAR collaboration. The yields and the $p_{T}$ spectra are presented and discussed in terms of chemical a nd thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central $Au+Au$ collisions. Our results indicate that there may be a time-span between chemical and thermal freeze-out during which elastic hadronic interactions occur.
We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair trans verse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3pm0.4({rm stat})pm0.4({rm syst})pm0.2^{rm model}$ or to $1.7pm0.3({rm stat})pm0.3({rm syst})pm0.2^{rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {sc pythia} or {sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.
The $jpsi$ $pt$ spectrum and nuclear modification factor ($raa$) are reported for $pt < 5 gevc$ and $|y|<1$ from 0% to 60% central Au+Au and Cu+Cu collisions at $snn = 200 gev$ at STAR. A significant suppression of $pt$-integrated $jpsi$ production is observed in central Au+Au events. The Cu+Cu data are consistent with no suppression, although the precision is limited by the available statistics. $raa$ in Au+Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with $pt$. The data are compared to high-$pt$ STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low $pt$ are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا