ﻻ يوجد ملخص باللغة العربية
Reaction diffusion systems are often used to study pattern formation in biological systems. However, most methods for understanding their behavior are challenging and can rarely be applied to complex systems common in biological applications. I present a relatively simple and efficient, non-linear stability technique that greatly aids such analysis when rates of diffusion are substantially different. This technique reduces a system of reaction diffusion equations to a system of ordinary differential equations tracking the evolution of a large amplitude, spatially localized perturbation of a homogeneous steady state. Stability properties of this system, determined using standard bifurcation techniques and software, describe both linear and non-linear patterning regimes of the reaction diffusion system. I describe the class of systems this method can be applied to and demonstrate its application. Analysis of Schnakenberg and substrate inhibition models is performed to demonstrate the methods capabilities in simplified settings and show that even these simple models have non-linear patterning regimes not previously detected. Analysis of a protein regulatory network related to chemotaxis shows its application in a more complex setting where other non-linear methods become intractable. Predictions of this method are verified against results of numerical simulation, linear stability, and full PDE bifurcation analyses.
A nonlinear PDE featuring flux limitation effects together with those of the porous media equation (nonlinear Fokker-Planck) is presented in this paper. We analyze the balance of such diverse effects through the study of the existence and qualitative
We establish global-in-time existence results for thermodynamically consistent reaction-(cross-)diffusion systems coupled to an equation describing heat transfer. Our main interest is to model species-dependent diffusivities, while at the same time e
Using pointwise semigroup techniques, we establish sharp rates of decay in space and time of a perturbed reaction diffusion front to its time-asymptotic limit. This recovers results of Sattinger, Henry and others of time-exponential convergence in we
The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced c
A self-consistent equation to derive a discreteness-induced stochastic steady state is presented for reaction-diffusion systems. For this formalism, we use the so-called Kuramoto length, a typical distance over which a molecule diffuses in its lifeti