ﻻ يوجد ملخص باللغة العربية
A nonlinear PDE featuring flux limitation effects together with those of the porous media equation (nonlinear Fokker-Planck) is presented in this paper. We analyze the balance of such diverse effects through the study of the existence and qualitative behavior of some admissible patterns, namely traveling wave solutions, to this singular reaction-difusion equation. We show the existence and qualitative behavior of different types of traveling waves: classical profiles for wave speeds high enough, and discontinuous waves that are reminiscent of hyperbolic shock waves when the wave speed lowers below a certain threshold. Some of these solutions are of particular relevance as they provide models by which the whole solution (and not just the bulk of it, as it is the case with classical traveling waves) spreads through the medium with finite speed.
Reaction diffusion systems are often used to study pattern formation in biological systems. However, most methods for understanding their behavior are challenging and can rarely be applied to complex systems common in biological applications. I prese
We develop a description of diffusion limited growth in solid-solid transformations, which are strongly influenced by elastic effects. Density differences and structural transformations provoke stresses at interfaces, which affect the phase equilibri
In porous media, there are three known regimes of fluid flows, namely, pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are usually treated separately in literature. To study complex flows when all three regimes may be prese
We consider in this article reaction-diffusion equations of the Fisher-KPP type with a nonlinearity depending on the space variable x, oscillating slowly and non-periodically. We are interested in the width of the interface between the unstable stead
In this work, we analyze the flow filtration process of slightly compressible fluids in porous media containing man made fractures with complex geometries. We model the coupled fracture-porous media system where the linear Darcy flow is considered in