ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing linear hypotheses in high-dimensional regressions

140   0   0.0 ( 0 )
 نشر من قبل Jian-feng Yao
 تاريخ النشر 2012
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

For a multivariate linear model, Wilks likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative requires complex analytic approximations and more importantly, these distributional approximations are feasible only for moderate dimension of the dependent variable, say $ple 20$. On the other hand, assuming that the data dimension $p$ as well as the number $q$ of regression variables are fixed while the sample size $n$ grows, several asymptotic approximations are proposed in the literature for Wilks $bLa$ including the widely used chi-square approximation. In this paper, we consider necessary modifications to Wilks test in a high-dimensional context, specifically assuming a high data dimension $p$ and a large sample size $n$. Based on recent random matrix theory, the correction we propose to Wilks test is asymptotically Gaussian under the null and simulations demonstrate that the corrected LRT has very satisfactory size and power, surely in the large $p$ and large $n$ context, but also for moderately large data dimensions like $p=30$ or $p=50$. As a byproduct, we give a reason explaining why the standard chi-square approximation fails for high-dimensional data. We also introduce a new procedure for the classical multiple sample significance test in MANOVA which is valid for high-dimensional data.



قيم البحث

اقرأ أيضاً

68 - Yufei Yi , Matey Neykov 2021
In this paper, we propose an abstract procedure for debiasing constrained or regularized potentially high-dimensional linear models. It is elementary to show that the proposed procedure can produce $frac{1}{sqrt{n}}$-confidence intervals for individu al coordinates (or even bounded contrasts) in models with unknown covariance, provided that the covariance has bounded spectrum. While the proof of the statistical guarantees of our procedure is simple, its implementation requires more care due to the complexity of the optimization programs we need to solve. We spend the bulk of this paper giving examples in which the proposed algorithm can be implemented in practice. One fairly general class of instances which are amenable to applications of our procedure include convex constrained least squares. We are able to translate the procedure to an abstract algorithm over this class of models, and we give concrete examples where efficient polynomial time methods for debiasing exist. Those include the constrained version of LASSO, regression under monotone constraints, regression with positive monotone constraints and non-negative least squares. In addition, we show that our abstract procedure can be applied to efficiently debias SLOPE and square-root SLOPE, among other popular regularized procedures under certain assumptions. We provide thorough simulation results in support of our theoretical findings.
Testing heteroscedasticity of the errors is a major challenge in high-dimensional regressions where the number of covariates is large compared to the sample size. Traditional procedures such as the White and the Breusch-Pagan tests typically suffer f rom low sizes and powers. This paper proposes two new test procedures based on standard OLS residuals. Using the theory of random Haar orthogonal matrices, the asymptotic normality of both test statistics is obtained under the null when the degree of freedom tends to infinity. This encompasses both the classical low-dimensional setting where the number of variables is fixed while the sample size tends to infinity, and the proportional high-dimensional setting where these dimensions grow to infinity proportionally. These procedures thus offer a wide coverage of dimensions in applications. To our best knowledge, this is the first procedures in the literature for testing heteroscedasticity which are valid for medium and high-dimensional regressions. The superiority of our proposed tests over the existing methods are demonstrated by extensive simulations and by several real data analyses as well.
In the context of a high-dimensional linear regression model, we propose the use of an empirical correlation-adaptive prior that makes use of information in the observed predictor variable matrix to adaptively address high collinearity, determining i f parameters associated with correlated predictors should be shrunk together or kept apart. Under suitable conditions, we prove that this empirical Bayes posterior concentrates around the true sparse parameter at the optimal rate asymptotically. A simplified version of a shotgun stochastic search algorithm is employed to implement the variable selection procedure, and we show, via simulation experiments across different settings and a real-data application, the favorable performance of the proposed method compared to existing methods.
102 - Yinan Lin , Zhenhua Lin 2021
We develop a unified approach to hypothesis testing for various types of widely used functional linear models, such as scalar-on-function, function-on-function and function-on-scalar models. In addition, the proposed test applies to models of mixed t ypes, such as models with both functional and scalar predictors. In contrast with most existing methods that rest on the large-sample distributions of test statistics, the proposed method leverages the technique of bootstrapping max statistics and exploits the variance decay property that is an inherent feature of functional data, to improve the empirical power of tests especially when the sample size is limited and the signal is relatively weak. Theoretical guarantees on the validity and consistency of the proposed test are provided uniformly for a class of test statistics.
287 - Li Yang , Wei Ma , Yichen Qin 2020
Concerns have been expressed over the validity of statistical inference under covariate-adaptive randomization despite the extensive use in clinical trials. In the literature, the inferential properties under covariate-adaptive randomization have bee n mainly studied for continuous responses; in particular, it is well known that the usual two sample t-test for treatment effect is typically conservative, in the sense that the actual test size is smaller than the nominal level. This phenomenon of invalid tests has also been found for generalized linear models without adjusting for the covariates and are sometimes more worrisome due to inflated Type I error. The purpose of this study is to examine the unadjusted test for treatment effect under generalized linear models and covariate-adaptive randomization. For a large class of covariate-adaptive randomization methods, we obtain the asymptotic distribution of the test statistic under the null hypothesis and derive the conditions under which the test is conservative, valid, or anti-conservative. Several commonly used generalized linear models, such as logistic regression and Poisson regression, are discussed in detail. An adjustment method is also proposed to achieve a valid size based on the asymptotic results. Numerical studies confirm the theoretical findings and demonstrate the effectiveness of the proposed adjustment method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا