ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian inference in high-dimensional linear models using an empirical correlation-adaptive prior

100   0   0.0 ( 0 )
 نشر من قبل Ryan Martin
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of a high-dimensional linear regression model, we propose the use of an empirical correlation-adaptive prior that makes use of information in the observed predictor variable matrix to adaptively address high collinearity, determining if parameters associated with correlated predictors should be shrunk together or kept apart. Under suitable conditions, we prove that this empirical Bayes posterior concentrates around the true sparse parameter at the optimal rate asymptotically. A simplified version of a shotgun stochastic search algorithm is employed to implement the variable selection procedure, and we show, via simulation experiments across different settings and a real-data application, the favorable performance of the proposed method compared to existing methods.

قيم البحث

اقرأ أيضاً

85 - Yue Yang , Ryan Martin 2020
In high-dimensions, the prior tails can have a significant effect on both posterior computation and asymptotic concentration rates. To achieve optimal rates while keeping the posterior computations relatively simple, an empirical Bayes approach has r ecently been proposed, featuring thin-tailed conjugate priors with data-driven centers. While conjugate priors ease some of the computational burden, Markov chain Monte Carlo methods are still needed, which can be expensive when dimension is high. In this paper, we develop a variational approximation to the empirical Bayes posterior that is fast to compute and retains the optimal concentration rate properties of the original. In simulations, our method is shown to have superior performance compared to existing variational approximations in the literature across a wide range of high-dimensional settings.
86 - Z. Bai , D. Jiang , J. Yao 2012
For a multivariate linear model, Wilks likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative requires complex analytic approximations and more importantly, th ese distributional approximations are feasible only for moderate dimension of the dependent variable, say $ple 20$. On the other hand, assuming that the data dimension $p$ as well as the number $q$ of regression variables are fixed while the sample size $n$ grows, several asymptotic approximations are proposed in the literature for Wilks $bLa$ including the widely used chi-square approximation. In this paper, we consider necessary modifications to Wilks test in a high-dimensional context, specifically assuming a high data dimension $p$ and a large sample size $n$. Based on recent random matrix theory, the correction we propose to Wilks test is asymptotically Gaussian under the null and simulations demonstrate that the corrected LRT has very satisfactory size and power, surely in the large $p$ and large $n$ context, but also for moderately large data dimensions like $p=30$ or $p=50$. As a byproduct, we give a reason explaining why the standard chi-square approximation fails for high-dimensional data. We also introduce a new procedure for the classical multiple sample significance test in MANOVA which is valid for high-dimensional data.
Labeling patients in electronic health records with respect to their statuses of having a disease or condition, i.e. case or control statuses, has increasingly relied on prediction models using high-dimensional variables derived from structured and u nstructured electronic health record data. A major hurdle currently is a lack of valid statistical inference methods for the case probability. In this paper, considering high-dimensional sparse logistic regression models for prediction, we propose a novel bias-corrected estimator for the case probability through the development of linearization and variance enhancement techniques. We establish asymptotic normality of the proposed estimator for any loading vector in high dimensions. We construct a confidence interval for the case probability and propose a hypothesis testing procedure for patient case-control labelling. We demonstrate the proposed method via extensive simulation studies and application to real-world electronic health record data.
266 - Zijian Guo 2020
Heterogeneity is an important feature of modern data sets and a central task is to extract information from large-scale and heterogeneous data. In this paper, we consider multiple high-dimensional linear models and adopt the definition of maximin eff ect (Meinshausen, B{u}hlmann, AoS, 43(4), 1801--1830) to summarize the information contained in this heterogeneous model. We define the maximin effect for a targeted population whose covariate distribution is possibly different from that of the observed data. We further introduce a ridge-type maximin effect to simultaneously account for reward optimality and statistical stability. To identify the high-dimensional maximin effect, we estimate the regression covariance matrix by a debiased estimator and use it to construct the aggregation weights for the maximin effect. A main challenge for statistical inference is that the estimated weights might have a mixture distribution and the resulted maximin effect estimator is not necessarily asymptotic normal. To address this, we devise a novel sampling approach to construct the confidence interval for any linear contrast of high-dimensional maximin effects. The coverage and precision properties of the proposed confidence interval are studied. The proposed method is demonstrated over simulations and a genetic data set on yeast colony growth under different environments.
Inferring causal relationships or related associations from observational data can be invalidated by the existence of hidden confounding. We focus on a high-dimensional linear regression setting, where the measured covariates are affected by hidden c onfounding and propose the {em Doubly Debiased Lasso} estimator for individual components of the regression coefficient vector. Our advocated method simultaneously corrects both the bias due to estimation of high-dimensional parameters as well as the bias caused by the hidden confounding. We establish its asymptotic normality and also prove that it is efficient in the Gauss-Markov sense. The validity of our methodology relies on a dense confounding assumption, i.e. that every confounding variable affects many covariates. The finite sample performance is illustrated with an extensive simulation study and a genomic application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا