ﻻ يوجد ملخص باللغة العربية
The BKMP conjecture (2006-2008), proposed a new method to compute closed and open Gromov-Witten invariants for every toric Calabi-Yau 3-folds, through a topological recursion based on mirror symmetry. So far, this conjecture had been verified to low genus for several toric CY3folds, and proved to all genus only for C^3. In this article we prove the general case. Our proof is based on the fact that both sides of the conjecture can be naturally written in terms of combinatorial sums of weighted graphs: on the A-model side this is the localization formula, and on the B-model side the graphs encode the recursive algorithm of the topological recursion. One can slightly reorganize the set of graphs obtained in the B-side, so that it coincides with the one obtained by localization in the A-model.Then it suffices to compare the weights of vertices and edges of graphs on each side, which is done in 2 steps: the weights coincide in the large radius limit, due to the fact that the toric graph is the tropical limit of the mirror curve. Then the derivatives with respect to Kahler radius coincide due to special geometry property implied by the topological recursion.
We first construct a derived equivalence between a small crepant resolution of an affine toric Calabi-Yau 3-fold and a certain quiver with a superpotential. Under this derived equivalence we establish a wall-crossing formula for the generating functi
We prove the equivariant Gromov-Witten theory of a nonsingular toric 3-fold X with primary insertions is equivalent to the equivariant Donaldson-Thomas theory of X. As a corollary, the topological vertex calculations by Agangic, Klemm, Marino, and Va
We construct a global B-model for weighted homogeneous polynomials based on K. Saitos theory of primitive forms. Our main motivation is to give a rigorous statement of the so called global mirror symmetry conjecture relating Gromov-Witten invariants
We construct Lagrangian sections of a Lagrangian torus fibration on a 3-dimensional conic bundle, which are SYZ dual to holomorphic line bundles over the mirror toric Calabi-Yau 3-fold. We then demonstrate a ring isomorphism between the wrapped Floer
We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold $X$. We define $mathrm{DT}_4$ invariants by integrating the Euler class of a tautological vector bundle $L^{[n]}$ against the virtual class. We conjecture a formula for their