ترغب بنشر مسار تعليمي؟ اضغط هنا

Gromov-Witten Theory of Quotient of Fermat Calabi-Yau varieties

83   0   0.0 ( 0 )
 نشر من قبل Todor Milanov E
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a global B-model for weighted homogeneous polynomials based on K. Saitos theory of primitive forms. Our main motivation is to give a rigorous statement of the so called global mirror symmetry conjecture relating Gromov-Witten invariants and Fan--Jarvis--Ruan--Witten invariants. Furthermore, our construction allows us to generalize the notion of a quasi-modular form and holomorphic anomaly equations. Finally, we prove the global mirror symmetry conjecture for the Fermat polynomials.



قيم البحث

اقرأ أيضاً

We study relative Gromov-Witten theory via universal relations provided by the interaction of degeneration and localization. We find relative Gromov-Witten theory is completely determined by absolute Gromov-Witten theory. The relationship between the relative and absolute theories is guided by a strong analogy to classical topology. As an outcome, we present a mathematical determination of the Gromov-Witten invariants (in all genera) of the Calabi-Yau quintic 3-fold in terms of known theories.
We use a topological framework to study descendent Gromov-Witten theory in higher genus, non-toric settings. Two geometries are considered: surfaces of general type and the Enriques Calabi-Yau threefold. We conjecture closed formulas for surfaces of general type in classes K and 2K. For the Enriques Calabi-Yau, Gromov-Witten invariants are calculated in genus 0, 1, and 2. In genus 2, the holomorphic anomaly equation is found.
192 - Jinsong Xu 2016
We prove a structure theorem for the Albanese maps of varieties with Q-linearly trivial log canonical divisors. Our start point is the action of a nonlinear algebraic group on a projective variety.
Noether-Lefschetz divisors in the moduli of K3 surfaces are the loci corresponding to Picard rank at least 2. We relate the degrees of the Noether-Lefschetz divisors in 1-parameter families of K3 surfaces to the Gromov-Witten theory of the 3-fold tot al space. The reduced K3 theory and the Yau-Zaslow formula play an important role. We use results of Borcherds and Kudla-Millson for O(2,19) lattices to determine the Noether-Lefschetz degrees in classical families of K3 surfaces of degrees 2, 4, 6 and 8. For the quartic K3 surfaces, the Noether-Lefschetz degrees are proven to be the Fourier coefficients of an explicitly computed modular form of weight 21/2 and level 8. The interplay with mirror symmetry is discussed. We close with a conjecture on the Picard ranks of moduli spaces of K3 surfaces.
In this note we initiate a program to obtain global descriptions of Calabi-Yau moduli spaces, to calculate their Picard group, and to identify within that group the Hodge line bundle, and the closely-related Bagger-Witten line bundle. We do this here for several Calabi-Yaus obtained in [DW09] as crepant resolutions of the orbifold quotient of the product of three elliptic curves. In particular we verify in these cases a recent claim of [GHKSST16] by noting that a power of the Hodge line bundle is trivial -- even though in most of these cases the Picard group is infinite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا