ترغب بنشر مسار تعليمي؟ اضغط هنا

Models for Modules

7   0   0.0 ( 0 )
 نشر من قبل Jan Troost
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Jan Troost




اسأل ChatGPT حول البحث

We recall the structure of the indecomposable sl(2) modules in the Bernstein-Gelfand-Gelfand category O. We show that all these modules can arise as quantized phase spaces of physical models. In particular, we demonstrate in a path integral discretization how a redefined action of the sl(2) algebra over the complex numbers can glue finite dimensional and infinite dimensional highest weight representations into indecomposable wholes. Furthermore, we discuss how projective cover representations arise in the tensor product of finite dimensional and Verma modules and give explicit tensor product decomposition rules. The tensor product spaces can be realized in terms of product path integrals. Finally, we discuss relations of our results to brane quantization and cohomological calculations in string theory.

قيم البحث

اقرأ أيضاً

In this article we continue our study of chiral fermions on a quantum curve. This system is embedded in string theory as an I-brane configuration, which consists of D4 and D6-branes intersecting along a holomorphic curve in a complex surface, togethe r with a B-field. Mathematically, it is described by a holonomic D-module. Here we focus on spectral curves, which play a prominent role in the theory of (quantum) integrable hierarchies. We show how to associate a quantum state to the I-brane system, and subsequently how to compute quantum invariants. As a first example, this yields an insightful formulation of (double scaled as well as general Hermitian) matrix models. Secondly, we formulate c=1 string theory in this language. Finally, our formalism elegantly reconstructs the complete dual Nekrasov-Okounkov partition function from a quantum Seiberg-Witten curve.
We propose a general formulation of perturbative quantum field theory on (finitely generated) projective modules over noncommutative algebras. This is the analogue of scalar field theories with non-trivial topology in the noncommutative realm. We tre at in detail the case of Heisenberg modules over noncommutative tori and show how these models can be understood as large rectangular pxq matrix models, in the limit p/q->theta, where theta is a possibly irrational number. We find out that the modele is highly sensitive to the number-theoretical aspect of theta and suffers from an UV/IR-mixing. We give a way to cure the entanglement and prove one-loop renormalizability.
38 - Daniel Whalen 2014
I present a simple dynamic programming algorithm for the evaluation of operators in a wide range of superconformal algebras. Special care is taken to describe the computation of the Gram matrix. A Mathematica package, Weaver.m, is provided that implements the algorithm.
Starting with an indecomposable Poincare module M_0 induced from a given irreducible Lorentz module we construct a free Poincare invariant gauge theory defined on the Minkowski space. The space of its gauge inequivalent solutions coincides with (in g eneral, is closely related to) the starting point module M_0. We show that for a class of indecomposable Poincare modules the resulting theory is a Lagrangian gauge theory of the mixed-symmetry higher spin fields. The procedure is based on constructing the parent formulation of the theory. The Labastida formulation and the unfolded description of the mixed symmetry fields are reproduced through the appropriate reductions of the parent formulation. As an independent check we show that in the momentum representation the solutions form a unitary irreducible Poincare module determined by the respective module of the Wigner little group.
The purpose of this paper is to apply the framework of non- commutative differential geometry to quantum deformations of a class of Kahler manifolds. For the examples of the Cartan domains of type I and flat space, we construct Fredholm modules over the quantized manifolds using the supercharges which arise in the quantization of supersymmetric generalizations of the manifolds. We compute the explicit formula for the Chern character on generators of the Toeplitz C^* -algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا