ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Imaging Speckle Interferometry forHigh Speed Nanometer-Scale Position Detection

433   0   0.0 ( 0 )
 نشر من قبل E.G. van Putten
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate a non-imaging approach to displacement measurement for complex scattering materials. By spatially controlling the wave front of the light that incidents on the material we concentrate the scattered light in a focus on a designated position. This wave front acts as an unique optical fingerprint that enables precise position detection of the illuminated material by simply measuring the intensity in the focus. By combining two optical fingerprints we demonstrate position detection along one dimension with a displacement resolution of 2.1 nm. As our approach does not require an image of the scattered field, it is possible to employ fast non-imaging detectors to enable high-speed position detection of scattering materials.



قيم البحث

اقرأ أيضاً

Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales[1, 2]. The microscopic origin of friction is poorly understood, due in part to a lack of methods for measuring the force on a nanometer-scale asperi ty sliding at velocity of the order of cm/s.[3, 4] Despite enormous advance in experimental techniques[5], this combination of small length scale and high velocity remained illusive. Here we present a technique for rapidly measuring the frictional forces on a single asperity (an AFM tip) over a velocity range from zero to several cm/s. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to a smooth sliding friction[1, 6]. We explain measurements on graphite using a modified Prandtl-Tomlinson model that takes into account the damped elastic deformation of the asperity. With its greatly improved force sensitivity and very small sliding amplitude, our method enables rapid and detailed surface mapping of the full velocity-dependence of frictional forces with less than 10~nm spatial resolution.
Optical nanocavities confine and store light, which is essential to increase the interaction between photons and electrons in semiconductor devices, enabling, e.g., lasers and emerging quantum technologies. While temporal confinement has improved by orders of magnitude over the past decades, spatial confinement inside dielectrics was until recently believed to be bounded at the diffraction limit. The conception of dielectric bowtie cavities (DBCs) shows a path to photon confinement inside semiconductors with mode volumes bound only by the constraints of materials and nanofabrication, but theory was so far misguided by inconsistent definitions of the mode volume and experimental progress has been impeded by steep nanofabrication requirements. Here we demonstrate nanometer-scale photon confinement inside 8 nm silicon DBCs with an aspect ratio of 30, inversely designed by fabrication-constrained topology optimization. Our cavities are defined within a compact device footprint of $4lambda^2$ and exhibit mode volumes down to $V=3 times 10^{-4} lambda^3$ with wavelengths in the $lambda=1550$ nm telecom band. This corresponds to field localization deep below the diffraction limit in a single hotspot inside the dielectric. A crucial insight underpinning our work is the identification of the critical role of lightning-rod effects at the surface. They invalidate the common definition of the mode volume, which is prone to gauge meretricious surface effects or numerical artefacts rather than robust confinement inside the dielectric. We use near-field optical measurements to corroborate the photon confinement to a single nanometer-scale hotspot. Our work enables new CMOS-compatible device concepts ranging from few- and single-photon nonlinearities over electronics-photonics integration to biosensing.
Laser speckle can provide a powerful tool that may be used for metrology, for example measurements of the incident laser wavelength with a resolution beyond that which may be achieved in a commercial device. However, to realise highest resolution req uires advanced multi-variate analysis techniques, which limit the acquisition rate of such a wavemeter. Here we show an arithmetically simple method to measure wavelength changes with dynamic speckle, based on a Poincar`e descriptor of the speckle pattern. We demonstrate the measurement of wavelength changes at femtometer-level with a measurement time reduced by two orders of magnitude compared to the previous state-of-the-art, which offers promise for applications such as speckle-based laser wavelength stabilisation.
We describe the design, fabrication, and measurement of a cavity opto-mechanical system consisting of two nanobeams of silicon nitride in the near-field of each other, forming a so-called zipper cavity. A photonic crystal patterning is applied to the nanobeams to localize optical and mechanical energy to the same cubic-micron-scale volume. The picrogram-scale mass of the structure, along with the strong per-photon optical gradient force, results in a giant optical spring effect. In addition, a novel damping regime is explored in which the small heat capacity of the zipper cavity results in blue-detuned opto-mechanical damping.
99 - Xuezhi Ma , Qiushi Liu , Ning Yu 2020
Optical hyperspectral imaging based on absorption and scattering of photons at the visible and adjacent frequencies denotes one of the most informative and inclusive characterization methods in material research. Unfortunately, restricted by the diff raction limit of light, it is unable to resolve the nanoscale inhomogeneity in light-matter interactions, which is diagnostic of the local modulation in material structure and properties. Moreover, many nanomaterials have highly anisotropic optical properties that are outstandingly appealing yet hard to characterize through conventional optical methods. Therefore, there has been a pressing demand in the diverse fields including electronics, photonics, physics, and materials science to extend the optical hyperspectral imaging into the nanometer length scale. In this work, we report a super-resolution hyperspectral imaging technique that simultaneously measures optical absorption and scattering spectra with the illumination from a tungsten-halogen lamp. We demonstrated sub-5 nm spatial resolution in both visible and near-infrared wavelengths (415 to 980 nm) for the hyperspectral imaging of strained single-walled carbon nanotubes (SWNT) and reconstructed true-color images to reveal the longitudinal and transverse optical transition-induced light absorption and scattering in the SWNTs. This is the first time transverse optical absorption in SWNTs were clearly observed experimentally. The new technique provides rich near-field spectroscopic information that had made it possible to analyze the spatial modulation of band-structure along a single SWNT induced through strain engineering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا