ترغب بنشر مسار تعليمي؟ اضغط هنا

Modular forms applied to the computational inverse Galois problem

145   0   0.0 ( 0 )
 نشر من قبل Johan Bosman
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Johan Bosman




اسأل ChatGPT حول البحث

For each of the groups PSL2(F25), PSL2(F32), PSL2(F49), PGL2(F25), and PGL2(F27), we display the first explicitly known polynomials over Q having that group as Galois group. Each polynomial is related to a Galois representation associated to a modular form. We indicate how computations with modular Galois representations were used to obtain these polynomials. For each polynomial, we also indicate how to use Serres conjectures to determine the modular form giving rise to the related Galois representation.



قيم البحث

اقرأ أيضاً

296 - Sara Arias-de-Reyna 2013
A strategy to address the inverse Galois problem over Q consists of exploiting the knowledge of Galois representations attached to certain automorphic forms. More precisely, if such forms are carefully chosen, they provide compatible systems of Galoi s representations satisfying some desired properties, e.g. properties that reflect on the image of the members of the system. In this article we survey some results obtained using this strategy.
We introduce Galois families of modular forms. They are a new kind of family coming from Galois representations of the absolute Galois groups of rational function fields over the rational field. We exhibit some examples and provide an infinite Galois family of non-liftable weight one Katz modular eigenforms over an algebraic closure of F_p for p in {3,5,7,11}.
129 - Johan Bosman 2007
In this paper we explicitly compute mod-l Galois representations associated to modular forms. To be precise, we look at cases with l<=23 and the modular forms considered will be cusp forms of level 1 and weight up to 22. We present the result in term s of polynomials associated to the projectivised representations. As an application, we will improve a known result on Lehmers non-vanishing conjecture for Ramanujans tau function.
This article is the first part of a series of three articles about compatible systems of symplectic Galois representations and applications to the inverse Galois problem. In this first part, we determine the smallest field over which the projectivi sation of a given symplectic group representation satisfying some natural conditions can be defined. The answer only depends on inner twists. We apply this to the residual representations of a compatible system of symplectic Galois representations satisfying some mild hypothesis and obtain precise information on their projective images for almost all members of the system, under the assumption of huge residual images, by which we mean that a symplectic group of full dimension over the prime field is contained up to conjugation. Finally, we obtain an application to the inverse Galois problem.
We employ methods from homotopy theory to define new obstructions to solutions of embedding problems. By using these novel obstructions we study embedding problems with non-solvable kernel. We apply these obstructions to study the unramified inverse Galois problem. That is, we show that our methods can be used to determine that certain groups cannot be realized as the Galois groups of unramified extensions of certain number fields. To demonstrate the power of our methods, we give an infinite family of totally imaginary quadratic number fields such that $text{Aut}(text{PSL}(2,q^2))$ for $q$ an odd prime power, cannot be realized as an unramified Galois group over $K,$ but its maximal solvable quotient can. To prove this result, we determine the ring structure of the etale cohomology ring $H^*(text{Spec }mathcal{O}_K;mathbb{Z}/ 2mathbb{Z})$ where $mathcal{O}_K$ is the ring of integers of an arbitrary totally imaginary number field $K.$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا