ﻻ يوجد ملخص باللغة العربية
We employ methods from homotopy theory to define new obstructions to solutions of embedding problems. By using these novel obstructions we study embedding problems with non-solvable kernel. We apply these obstructions to study the unramified inverse Galois problem. That is, we show that our methods can be used to determine that certain groups cannot be realized as the Galois groups of unramified extensions of certain number fields. To demonstrate the power of our methods, we give an infinite family of totally imaginary quadratic number fields such that $text{Aut}(text{PSL}(2,q^2))$ for $q$ an odd prime power, cannot be realized as an unramified Galois group over $K,$ but its maximal solvable quotient can. To prove this result, we determine the ring structure of the etale cohomology ring $H^*(text{Spec }mathcal{O}_K;mathbb{Z}/ 2mathbb{Z})$ where $mathcal{O}_K$ is the ring of integers of an arbitrary totally imaginary number field $K.$
A strategy to address the inverse Galois problem over Q consists of exploiting the knowledge of Galois representations attached to certain automorphic forms. More precisely, if such forms are carefully chosen, they provide compatible systems of Galoi
This article is the first part of a series of three articles about compatible systems of symplectic Galois representations and applications to the inverse Galois problem. In this first part, we determine the smallest field over which the projectivi
For each of the groups PSL2(F25), PSL2(F32), PSL2(F49), PGL2(F25), and PGL2(F27), we display the first explicitly known polynomials over Q having that group as Galois group. Each polynomial is related to a Galois representation associated to a modula
Let $F$ be a field of characteristic 2 and let $X$ be a smooth projective quadric of dimension $ge 1$ over $F$. We study the unramified cohomology groups with 2-primary torsion coefficients of $X$ in degrees 2 and 3. We determine completely the kerne
Let $K$ be a totally real number field of degree $n geq 2$. The inverse different of $K$ gives rise to a lattice in $mathbb{R}^n$. We prove that the space of Schwartz Fourier eigenfunctions on $mathbb{R}^n$ which vanish on the component-wise square r