ﻻ يوجد ملخص باللغة العربية
Co-based nanostructures ranging from core-shell to hollow nanoparticles were produced by varying the reaction time and the chemical environment during the thermal decomposition of Co2(CO)8. Both structural characterization and kinetic model simulation illustrate that the diffusivities of Co and oxygen determine the growth ratio and the final morphology of the nanoparticles. Exchange coupling between Co and Co-oxide in core/shell nanoparticles induced a shift of field-cooled hysteresis loops that is proportional to the shell thickness, as verified by numerical studies. The increased nanocomplexity when going from core/shell to hollow particles, also leads to the appearance of hysteresis above 300 K due to an enhancement of the surface anisotropy resulting from the additional spin-disordered surfaces.
We present a density-functional theory based Wulff construction of the equilibrium shape of RuO2 particles in an oxygen environment. The obtained intricate variations of the crystal habit with the oxygen chemical potential allow for a detailed discus
We study the magnetism of the hole doped CuO2 spin chains in Sr14Cu24O41 by measuring the Electron Spin Resonance (ESR) and the static magnetization M in applied magnetic fields up to 14 T. In this compound, the dimerized ground state and the charge
We model shell formation of core-shell noble metal nanoparticles. A recently developed kinetic Monte Carlo approach is utilized to reproduce growth morphologies realized in recent experiments on core-shell nanoparticle synthesis, which reported smoot
Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified
The results of density functional theory calculations and measurements using X-ray photoelectron spectroscopy of Co-nanoparticles dispersed on graphene/Cu are presented. It is found that for low cobalt thickness (0.02 nm - 0.06 nm) the Co forms islan