ﻻ يوجد ملخص باللغة العربية
We present the SPICA Coronagraphic Instrument (SCI), which has been designed for a concentrated study of extra-solar planets (exoplanets). SPICA mission provides us with a unique opportunity to make high contrast observations because of its large telescope aperture, the simple pupil shape, and the capability for making infrared observations from space. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in infrared, while the monitoring of transiting planets is another important target. The specification and an overview of the design of the instrument are shown. In the SCI, coronagraphic and non-coronagraphic modes are applicable for both an imaging and a spectroscopy. The core wavelength range and the goal contrast of the coronagraphic mode are 3.5--27$mu$m, and 10$^{-6}$, respectively. Two complemental designs of binary shaped pupil mask coronagraph are presented. The SCI has capability of simultaneous observations of one target using two channels, a short channel with an InSb detector and a long wavelength channel with a Si:As detector. We also give a report on the current progress in the development of key technologies for the SCI.
This paper, first, presents introductory reviews of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission and the SPICA Coronagraph Instrument (SCI). SPICA will realize a 3m class telescope cooled to 6K in orbit. The launch of S
SPICA is a mid to far infra-red space mission to explore the processes that form galaxies, stars and planets. SPICA/SAFARI is the far infrared spectrometer that provides near-background limited observations between 34 and 230 micrometers. The core of
We describe a novel GaAs/AlGaAs double-quantum-well device for the infrared photon detection, called Charge-Sensitive Infrared Phototransistor (CSIP). The principle of CSIP detector is the photo-excitation of an intersubband transition in a QW as an
Vibrations are a key source of image degradation in ground-based instrumentation, especially for high-contrast imaging instruments. Vibrations reduce the quality of the correction provided by the adaptive optics system, blurring the science image and
Here we review the current optical mechanical design of MagAO-X. The project is post-PDR and has finished the design phase. The design presented here is the baseline to which all the optics and mechanics have been fabricated. The optical/mechanical p