ترغب بنشر مسار تعليمي؟ اضغط هنا

Low and medium energy deuteron-ind ced reactions on $^{63,65}$Cu nuclei

123   0   0.0 ( 0 )
 نشر من قبل Marilena Avrigeanu
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The activation cross sections of (d,p), (d,2n), (d,3n), and (d,2p) reactions on 63,65Cu were measured in the energy range from 4 to 20 MeV using the stacked-foils technique. Then, following the available elastic-scattering data analysis that provided the optical potential for reaction cross sections calculations, an increased effort has been devoted to the breakup mechanism, the direct reaction stripping, and the pre-equilibrium and compound-nucleus cross section calculations, corrected for the breakup and stripping decrease of the total reaction cross section. The overall agreement between the measured and calculated deuteron activation cross sections proves the correctness of the nuclear mechanisms account, next to the simultaneous analysis of the elastic-scattering and reaction data.



قيم البحث

اقرأ أيضاً

The scarce data systematics and complexity of deuteron interactions demand the update of both the experimental database and theoretical frame of deuteron activation cross sections. Various reactions induced by neutrons and protons following the deute ron breakup (BU) should be also taken into account. On the other hand, deuteron reaction cross sections recommended recently for high-priority elements are still based on data fit without predictive power. Purpose: Accurate new measurements of low-energy deuteron-induced reaction cross sections for monoisotopic (55Mn) natural manganese target enhance the related database as well as the opportunity of an unitary and consistent account of the related reaction mechanisms. Method: Activation cross sections of 54,56Mn, and 51Cr nuclei by deuterons on $^{55}$Mn were measured at energies <20 MeV by the stacked-foil technique and high resolution gamma spectrometry at the U-120M cyclotron of CANAM, NPI CAS. Then all available data for deuterons on 55Mn up to 50 MeV are analyzed paying particular attention to BU and direct reaction (DR) mechanisms. Results: Newly measured activation cross sections strengthen the deuteron database at low energies, at once with a consistent account for the first time of all available data. Conclusions: Due account of deuteron-induced reactions on 55Mn, including particularly the new experimental data at low energies, is provided by a suitable BU and DR assessment.
157 - M. Avrigeanu , V. Avrigeanu , 2011
An analysis of the $^{231}$Pa$(d,3n)$$^{230}$U reaction excitation function at energies around the Coulomb barrier has taken into account the pre-equilibrium and compound-nucleus cross sections corrected for the deuteron-breakup decrease of the total reaction cross section, as well as the inelastic breakup enhancement. The analysis reveals the dominance of the deuteron breakup mechanism unlike a former assessment in this respect of the deuteron-induced fission process.
Background: Thick-target-induced nucleon-adding transfer reactions onto energetic rare-isotope beams are an emerging spectroscopic tool. Their sensitivity to single-particle structure complements one-nucleon removal reaction capabilities in the quest to reveal the evolution of nuclear shell structure in very exotic nuclei. Purpose: To add intermediate-energy, carbon-target-induced one-proton pickup reactions to the arsenal of $gamma$-ray tagged direct reactions applicable in the regime of low beam intensities and to apply these for the first time to $fp$-shell nuclei. Methods: Inclusive and partial cross sections were measured for the $ uc{12}{C}( uc{48}{Cr}, uc{49}{Mn}+gamma)$X and $ uc{12}{C}( uc{50}{Fe}, uc{51}{Co}+gamma)$X proton pickup reactions at 56.7 and 61.2 MeV/nucleon, respectively, using coincident particle-$gamma$ spectroscopy at the NSCL. The results are compared to reaction theory calculations using $fp$-shell-model nuclear structure input. For comparison with our previous work, the same reactions were measured on uc{9}{Be} targets. Results: The measured partial cross sections confirm the specific population pattern predicted by theory, with pickup into high-$ell$ orbitals being strongly favored; driven by linear and angular momentum matching. Conclusion: Carbon target-induced pickup reactions are well-suited, in the regime of modest beam intensity, to study the evolution of nuclear structure, with specific sensitivities that are well described by theory.
Purpose: Accurate new measurements of low-energy deuteron-induced reaction cross sections for natural Cr target can enhance the related database and the opportunity for an unitary and consistent account of the involved reaction mechanisms. Methods: T he activation cross sections of $^{51,52,54}$Mn, $^{51}$Cr, and $^{48}$V nuclei for deuterons incident on natural Cr at energies up to 20 MeV, were measured by the stacked-foil technique and high resolution gamma spectrometry using U-120M cyclotron of the Center of Accelerators and Nuclear Analytical Methods (CANAM) of the Nuclear Physics Institute of the Czech Academy of Sciences (NPI CAS). They as well as formerly available data for deuteron interactions with Cr isotopes up to 60 MeV are the object of an extended analysis of all processes from elastic scattering until the evaporation from fully equilibrated compound system, but with a particular attention given to the BU and DR mechanisms. Results: The new measured activation excitation functions proved essential for the enrichment of the deuteron database, while the theoretical analysis of all available data strengthens for the first time their consistent account provided that (i) a suitable BU and DR assessment is completed by (ii) the assumption of PE and CN contributions corrected for decrease of the total-reaction cross section due to the leakage of the initial deuteron flux towards BU and DR processes. Conclusions: The suitable description of nuclear mechanisms involved within deuteron-induced reactions on chromium, taking into account especially the BU and DR direct processes, is validated by an overall agreement of the calculated and measured cross sections including particularly the new experimental data at low energies.
69 - Morgan B. Fox 2020
A number of accelerator-based isotope production facilities utilize 100- to 200-MeV proton beams due to the high production rates enabled by high-intensity beam capabilities and the greater diversity of isotope production brought on by the long range of high-energy protons. However, nuclear reaction modeling at these energies can be challenging because of the interplay between different reaction modes and a lack of existing guiding cross section data. A Tri-lab collaboration has been formed among the Lawrence Berkeley, Los Alamos, and Brookhaven National Laboratories to address these complexities by characterizing charged-particle nuclear reactions relevant to the production of established and novel radioisotopes. In the inaugural collaboration experiments, stacked-targets of niobium foils were irradiated at the Brookhaven Linac Isotope Producer (E$_p$=200 MeV) and the Los Alamos Isotope Production Facility (E$_p$=100 MeV) to measure $^{93}$Nb(p,x) cross sections between 50 and 200 MeV. The measured cross-section results were compared with literature data as well as the default calculations of the nuclear model codes TALYS, CoH, EMPIRE, and ALICE. We developed a standardized procedure that determines the reaction model parameters that best reproduce the most prominent reaction channels in a physically justifiable manner. The primary focus of the procedure was to determine the best parametrization for the pre-equilibrium two-component exciton model. This modeling study revealed a trend toward a relative decrease for internal transition rates at intermediate proton energies (E$_p$=20-60 MeV) in the current exciton model as compared to the default values. The results of this work are instrumental for the planning, execution, and analysis essential to isotope production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا