ترغب بنشر مسار تعليمي؟ اضغط هنا

The strength of frustration and quantum fluctuations in LiVCuO4

42   0   0.0 ( 0 )
 نشر من قبل S. -L. Drechsler
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the 1D-frustrated ferromagnetic J_1-J_2 model with interchain coupling added, we analyze the dynamical and static structure factor S(k,omega), the pitch angle phi of the magnetic structure, the magnetization curve of edge-shared chain cuprates, and focus on LiCuVO4 for which neither a perturbed spinon nor a spin wave approach can be applied. phi is found to be most sensitive to the interplay of frustration and quantum fluctuations. For LiVCuO4 the obtained exchange parameters J are in accord with the results for a realistic 5-band extended Hubbard model and LSDA + U predictions yielding alpha=J_2/|J_1| about 0.75 in contrast to 5.5 > alpha > 1.42 suggested in the literature. The alpha-regime of the empirical phi-values in NaCu2O2 and linarite are considered, too.

قيم البحث

اقرأ أيضاً

Quantum spin systems such as magnetic insulators usually show classical magnetic order, but such classical states can give way to quantum liquids with exotic entanglement through two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaevs honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10 where Ir3O12 trimers form an unfrustrated square lattice. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilized by strong antiferromagnetic interaction with Curie-Weiss temperature - 766 K. The astonishing frustration parameter of 3800 is beyond any known iridate thus far. Heat capacity and thermal conductivity are both linear at low temperatures, a familiar feature in metals but here in an insulator pointing to an exotic quantum liquid state. A mere 2% Sr substitution for Ba produces long-range order at 130 K and destroys the linear-T features. Although the Ir4+(5d5) ions in Ba4Ir3O10 appear to form Ir3O12 trimers of face-sharing IrO6 octahedra, we propose that intra-trimer exchange is reduced and the lattice recombines into an array of coupled 1D chains with additional spins. An extreme limit of decoupled 1D chains can explain most but not all of the striking experimental observations, indicating that the inter-chain coupling plays an important role in the novel frustration mechanism leading to this quantum liquid.
Specific heat and ac magnetic susceptibility measurements, spanning low temperatures ($T geq 40$ mK) and high magnetic fields ($B leq 14$ T), have been performed on a two-dimensional (2D) antiferromagnet Cu(tn)Cl$_{2}$ (tn = C$_{3}$H$_{10}$N$_{2}$). The compound represents an $S = 1/2$ spatially anisotropic triangular magnet realized by a square lattice with nearest-neighbor ($J/k_{B} = 3$ K), frustrating next-nearest-neighbor ($0 < J^{prime}/J < 0.6$), and interlayer ($|J^{prime prime}/J| approx 10^{-3}$) interactions. The absence of long-range magnetic order down to $T = $ 60 mK in $B = 0$ and the $T^{2}$ behavior of the specific heat for $T leq 0.4$ K and $B geq 0$ are considered evidence of high degree of 2D magnetic order. In fields lower than the saturation field, $B_{text{sat}} = 6.6$ T, a specific heat anomaly, appearing near 0.8 K, is ascribed to bound vortex-antivortex pairs stabilized by the applied magnetic field. The resulting magnetic phase diagram is remarkably consistent with the one predicted for the ideal square lattice, except that $B_{text{sat}}$ is shifted to values lower than expected. Potential explanations for this observation, as well as the possibility of a Berezinski-Kosterlitz-Thouless (BKT) phase transition in a spatially anisotropic triangular magnet with the N{e}el ground state, are discussed.
427 - Y. Tokiwa , C. Stingl , M.S. Kim 2015
Geometrical frustration describes situations where interactions are incompatible with the lattice geometry and stabilizes exotic phases such as spin liquids. Whether geometrical frustration of magnetic interactions in metals can induce unconventional quantum critical points is an active area of research. We focus on the hexagonal heavy fermion metal CeRhSn where the Kondo ions are located on distorted kagome planes stacked along the c axis. Low-temperature specific heat, thermal expansion and magnetic Gruneisen parameter measurements prove a zero-field quantum critical point. The linear thermal expansion, which measures the initial uniaxial pressure derivative of the entropy, displays a striking anisotropy. Critical and noncritical behaviors along and perpendicular to the kagome planes, respectively, prove that quantum criticality is driven by geometrical frustration. We also discovered a spin-flop-type metamagnetic crossover. This excludes an itinerant scenario and suggests that quantum criticality is related to local moments in a spin-liquid like state.
By applying density functional theory, we find strong evidence for an itinerant nature of magnetism in two families of iron pnictides. Furthermore, by employing dynamical mean field theory with continuous time quantum Monte Carlo as an impurity solve r, we observe that the antiferromagnetic metal with small magnetic moment naturally arises out of coupling between unfrustrated and frustrated bands. Our results point to a possible scenario for magnetism in iron pnictides where magnetism originates from a strong instability at the momentum vector ($pi$, $pi$, $pi$) while it is reduced by quantum fluctuations due to the coupling between weakly and strongly frustrated bands.
The static and dynamic magnetic properties of the Nd$_3$Ga$_5$SiO$_{14}$ compound, which appears as the first materialization of a rare-earth kagome-type lattice, were re-examined, owing to contradictory results in the previous studies. Neutron scatt ering, magnetization and specific heat measurements were performed and analyzed, in particular by fully taking account of the crystal electric field effects on the Nd$^{3+}$ ions. One of the novel findings is that the peculiar temperature independent spin dynamics observed below 10 K expresses single-ion quantum processes. This would short-circuit the frustration induced cooperative dynamics, which would emerge only at very low temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا