ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden magnetic frustration by quantum relaxation in anisotropic Nd-langasite

139   0   0.0 ( 0 )
 نشر من قبل Virginie Simonet
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Virginie Simonet




اسأل ChatGPT حول البحث

The static and dynamic magnetic properties of the Nd$_3$Ga$_5$SiO$_{14}$ compound, which appears as the first materialization of a rare-earth kagome-type lattice, were re-examined, owing to contradictory results in the previous studies. Neutron scattering, magnetization and specific heat measurements were performed and analyzed, in particular by fully taking account of the crystal electric field effects on the Nd$^{3+}$ ions. One of the novel findings is that the peculiar temperature independent spin dynamics observed below 10 K expresses single-ion quantum processes. This would short-circuit the frustration induced cooperative dynamics, which would emerge only at very low temperature.



قيم البحث

اقرأ أيضاً

135 - J. H. Lee , J. Ma , S. E. Hahn 2017
Localized spins and itinerant electrons rarely coexist in geometrically-frustrated spinel lattices. We show that the spinel CoV2O4 stands at the crossover from insulating to itinerant behavior and exhibits a complex interplay between localized spins and itinerant electrons. In contrast to the expected paramagnetism, localized spins supported by enhanced exchange couplings are frustrated by the effects of delocalized electrons. This frustration produces a non-collinear spin state and may be responsible for macroscopic spin-glass behavior. Competing phases can be uncovered by external perturbations such as pressure or magnetic field, which enhance the frustration.
135 - Di Liu , Si Wu , Xuanyu Long 2021
We study the magnetic properties of CaFeTi$_2$O$_6$ (CFTO) by high-field magnetization and specific heat measurements. While the magnetic susceptibility data yield a vanishingly small Curie-Weiss temperature, the magnetic moments are not fully polari zed in magnetic field up to 60 T, which reveals a large spin exchange energy scale. Yet, the system shows no long range magnetic order but a spin-glass-like state below 5.5 K in zero field, indicating strong magnetic frustration in this system. Applying magnetic field gradually suppresses the spin-glass-like state and gives rise to a potential quantum spin liquid state whose low-temperature specific heat exhibits a $T^{1.6}$ power-law. Crucially, conventional mechanisms for frustration do not apply to this system as it possesses neither apparent geometrical frustration nor exchange frustration. We suggest that the orbital modulation of exchange interaction is likely the source of hidden frustration in CFTO, and its full characterization may open a new route in the quest for quantum spin liquids.
The rich phase diagrams of magnetically frustrated pyrochlores have maintained a high level of interest over the past 20 years. To experimentally explore these phase diagrams requires a means of tuning the relevant interactions. One approach to achie ve this is chemical pressure, that is, varying the size of the non-magnetic cation. Here, we report on a new family of lead-based pyrochlores A$_2$Pb$_2$O$_7$ (A = Pr, Nd, Gd), which we have characterized with magnetic susceptibility and specific heat. Lead is the largest known possible B-site cation for the pyrochlore lattice. Thus, these materials significantly expand the phase space of the frustrated pyrochlores. Pr$_2$Pb$_2$O$_7$ has an absence of long-range magnetic order down to 400 mK and a spin ice-like heat capacity anomaly at 1.2 K. Thus, Pr$_2$Pb$_2$O$_7$ is a candidate for a quantum spin ice state, despite weaker exchange. Nd$_2$Pb$_2$O$_7$ transitions to a magnetically ordered state at 0.41 K. The Weiss temperature for Nd$_2$Pb$_2$O$_7$ is $theta_{text{CW}}$ = $-$0.06 K, indicating close competition between ferromagnetic and antiferromagnetic interactions. Gd$_2$Pb$_2$O$_7$ is a Heisenberg antiferromagnet that transitions to long-range magnetic order at 0.81 K, in spite of significant site mixing. Below its ordering transition, we find a $T^{3/2}$ heat capacity dependence in Gd$_2$Pb$_2$O$_7$, confirmation of a ground state that is distinct from other gadolinium pyrochlores. These lead-based pyrochlores provide insight into the effects of weakened exchange on highly frustrated lattices and represent further realizations of several exotic magnetic ground states which can test theoretical models.
Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Recently $beta$-Mn structure-type Co-Zn-Mn alloys were id entified as a new class of chiral magnet to host such skyrmion crystal phases, while $beta$-Mn itself is known as hosting an elemental geometrically frustrated spin liquid. Here we report the intermediate composition system Co$_7$Zn$_7$Mn$_6$ to be a unique host of two disconnected, thermal-equilibrium topological skyrmion phases; one is a conventional skyrmion crystal phase stabilized by thermal fluctuations and restricted to exist just below the magnetic transition temperature $T_mathrm{c}$, and the other is a novel three-dimensionally disordered skyrmion phase that is stable well below $T_mathrm{c}$. The stability of this new disordered skyrmion phase is due to a cooperative interplay between the chiral magnetism with Dzyaloshinskii-Moriya interaction and the frustrated magnetism inherent to $beta$-Mn.
We investigate single crystalline samples of Ce$_{1-x}$Nd$_{x}$RhIn$_{5}$ by means of X-ray diffraction, microprobe, magnetic susceptibility, heat capacity, and electrical resistivity measurements. Our data reveal that the antiferromagnetic transitio n temperature of CeRhIn$_{5}$, $T_{N}^{mathrm{Ce}} = 3.8$ K, is linearly suppressed with $x_{mathrm{Nd}}$, by virtue of the Kondo hole created by Nd substitution. The extrapolation of $T^{mathrm{Ce}}_{N}$ to zero temperature, however, occurs at $x_{c} sim 0.3$, which is below the 2D percolation limit found in Ce$_{1-x}$La$_{x}$RhIn$_{5}$. This result strongly suggests the presence of crystal-field frustration effects. Near $x_{mathrm{Nd}} sim 0.2$, the Ising AFM order from Nd ions is stabilized and $T^{mathrm{Nd}}_{N}$ increases up to $11$ K in pure NdRhIn$_{5}$. Our results shed light on the effects of magnetic doping in heavy-fermion antiferromagnets and stimulate the study of such systems under applied pressure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا