ترغب بنشر مسار تعليمي؟ اضغط هنا

On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty

123   0   0.0 ( 0 )
 نشر من قبل Ignace Loris
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An explicit algorithm for the minimization of an $ell_1$ penalized least squares functional, with non-separable $ell_1$ term, is proposed. Each step in the iterative algorithm requires four matrix vector multiplications and a single simple projection on a convex set (or equivalently thresholding). Convergence is proven and a 1/N convergence rate is derived for the functional. In the special case where the matrix in the $ell_1$ term is the identity (or orthogonal), the algorithm reduces to the traditional iterative soft-thresholding algorithm. In the special case where the matrix in the quadratic term is the identity (or orthogonal), the algorithm reduces to a gradient projection algorithm for the dual problem. By replacing the projection with a simple proximity operator, other convex non-separable penalties than those based on an $ell_1$-norm can be handled as well.

قيم البحث

اقرأ أيضاً

Recovery of low-rank matrices from a small number of linear measurements is now well-known to be possible under various model assumptions on the measurements. Such results demonstrate robustness and are backed with provable theoretical guarantees. Ho wever, extensions to tensor recovery have only recently began to be studied and developed, despite an abundance of practical tensor applications. Recently, a tensor variant of the Iterative Hard Thresholding method was proposed and theoretical results were obtained that guarantee exact recovery of tensors with low Tucker rank. In this paper, we utilize the same tensor version of the Restricted Isometry Property (RIP) to extend these results for tensors with low CANDECOMP/PARAFAC (CP) rank. In doing so, we leverage recent results on efficient approximations of CP decompositions that remove the need for challenging assumptions in prior works. We complement our theoretical findings with empirical results that showcase the potential of the approach.
Low-rank tensor recovery problems have been widely studied in many applications of signal processing and machine learning. Tucker decomposition is known as one of the most popular decompositions in the tensor framework. In recent years, researchers h ave developed many state-of-the-art algorithms to address the problem of low-Tucker-rank tensor recovery. Motivated by the favorable properties of the stochastic algorithms, such as stochastic gradient descent and stochastic iterative hard thresholding, we aim to extend the well-known stochastic iterative hard thresholding algorithm to the tensor framework in order to address the problem of recovering a low-Tucker-rank tensor from its linear measurements. We have also developed linear convergence analysis for the proposed method and conducted a series of experiments with both synthetic and real data to illustrate the performance of the proposed method.
We propose an iterative algorithm for the minimization of a $ell_1$-norm penalized least squares functional, under additional linear constraints. The algorithm is fully explicit: it uses only matrix multiplications with the three matrices present in the problem (in the linear constraint, in the data misfit part and in penalty term of the functional). None of the three matrices must be invertible. Convergence is proven in a finite-dimensional setting. We apply the algorithm to a synthetic problem in magneto-encephalography where it is used for the reconstruction of divergence-free current densities subject to a sparsity promoting penalty on the wavelet coefficients of the current densities. We discuss the effects of imposing zero divergence and of imposing joint sparsity (of the vector components of the current density) on the current density reconstruction.
In recent studies on sparse modeling, $l_q$ ($0<q<1$) regularized least squares regression ($l_q$LS) has received considerable attention due to its superiorities on sparsity-inducing and bias-reduction over the convex counterparts. In this paper, we propose a Gauss-Seidel iterative thresholding algorithm (called GAITA) for solution to this problem. Different from the classical iterative thresholding algorithms using the Jacobi updating rule, GAITA takes advantage of the Gauss-Seidel rule to update the coordinate coefficients. Under a mild condition, we can justify that the support set and sign of an arbitrary sequence generated by GAITA will converge within finite iterations. This convergence property together with the Kurdyka-{L}ojasiewicz property of ($l_q$LS) naturally yields the strong convergence of GAITA under the same condition as above, which is generally weaker than the condition for the convergence of the classical iterative thresholding algorithms. Furthermore, we demonstrate that GAITA converges to a local minimizer under certain additional conditions. A set of numerical experiments are provided to show the effectiveness, particularly, much faster convergence of GAITA as compared with the classical iterative thresholding algorithms.
94 - Chang-Ock Lee , Eun-Hee Park , 2020
In this corrigendum, we offer a correction to [J. Korean. Math. Soc., 54 (2017), pp. 461--477]. We construct a counterexample for the strengthened Cauchy--Schwarz inequality used in the original paper. In addition, we provide a new proof for Lemma 5 of the original paper, an estimate for the extremal eigenvalues of the standard unpreconditioned FETI-DP dual operator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا