ﻻ يوجد ملخص باللغة العربية
An explicit algorithm for the minimization of an $ell_1$ penalized least squares functional, with non-separable $ell_1$ term, is proposed. Each step in the iterative algorithm requires four matrix vector multiplications and a single simple projection on a convex set (or equivalently thresholding). Convergence is proven and a 1/N convergence rate is derived for the functional. In the special case where the matrix in the $ell_1$ term is the identity (or orthogonal), the algorithm reduces to the traditional iterative soft-thresholding algorithm. In the special case where the matrix in the quadratic term is the identity (or orthogonal), the algorithm reduces to a gradient projection algorithm for the dual problem. By replacing the projection with a simple proximity operator, other convex non-separable penalties than those based on an $ell_1$-norm can be handled as well.
Recovery of low-rank matrices from a small number of linear measurements is now well-known to be possible under various model assumptions on the measurements. Such results demonstrate robustness and are backed with provable theoretical guarantees. Ho
Low-rank tensor recovery problems have been widely studied in many applications of signal processing and machine learning. Tucker decomposition is known as one of the most popular decompositions in the tensor framework. In recent years, researchers h
We propose an iterative algorithm for the minimization of a $ell_1$-norm penalized least squares functional, under additional linear constraints. The algorithm is fully explicit: it uses only matrix multiplications with the three matrices present in
In recent studies on sparse modeling, $l_q$ ($0<q<1$) regularized least squares regression ($l_q$LS) has received considerable attention due to its superiorities on sparsity-inducing and bias-reduction over the convex counterparts. In this paper, we
In this corrigendum, we offer a correction to [J. Korean. Math. Soc., 54 (2017), pp. 461--477]. We construct a counterexample for the strengthened Cauchy--Schwarz inequality used in the original paper. In addition, we provide a new proof for Lemma 5