ﻻ يوجد ملخص باللغة العربية
In recent studies on sparse modeling, $l_q$ ($0<q<1$) regularized least squares regression ($l_q$LS) has received considerable attention due to its superiorities on sparsity-inducing and bias-reduction over the convex counterparts. In this paper, we propose a Gauss-Seidel iterative thresholding algorithm (called GAITA) for solution to this problem. Different from the classical iterative thresholding algorithms using the Jacobi updating rule, GAITA takes advantage of the Gauss-Seidel rule to update the coordinate coefficients. Under a mild condition, we can justify that the support set and sign of an arbitrary sequence generated by GAITA will converge within finite iterations. This convergence property together with the Kurdyka-{L}ojasiewicz property of ($l_q$LS) naturally yields the strong convergence of GAITA under the same condition as above, which is generally weaker than the condition for the convergence of the classical iterative thresholding algorithms. Furthermore, we demonstrate that GAITA converges to a local minimizer under certain additional conditions. A set of numerical experiments are provided to show the effectiveness, particularly, much faster convergence of GAITA as compared with the classical iterative thresholding algorithms.
We investigate a class of constrained sparse regression problem with cardinality penalty, where the feasible set is defined by box constraint, and the loss function is convex, but not necessarily smooth. First, we put forward a smoothing fast iterati
We present a novel greedy Gauss-Seidel method for solving large linear least squares problem. This method improves the greedy randomized coordinate descent (GRCD) method proposed recently by Bai and Wu [Bai ZZ, and Wu WT. On greedy randomized coordin
Given a linear regression setting, Iterative Least Trimmed Squares (ILTS) involves alternating between (a) selecting the subset of samples with lowest current loss, and (b) re-fitting the linear model only on that subset. Both steps are very fast and
With a greedy strategy to construct control index set of coordinates firstly and then choosing the corresponding column submatrix in each iteration, we present a greedy block Gauss-Seidel (GBGS) method for solving large linear least squares problem.
The total least squares problem with the general Tikhonov regularization can be reformulated as a one-dimensional parametric minimization problem (PM), where each parameterized function evaluation corresponds to solving an n-dimensional trust region