ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular optimization for cancer identification with circularly polarized light

80   0   0.0 ( 0 )
 نشر من قبل Nozomi Nishizawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Depolarization of circularly polarized light scattered from biological tissues depends on structural changes in cell nuclei, which can provide valuable information for differentiating cancer tissues concealed in healthy tissues. In this study, we experimentally verified the possibility of cancer identification using scattering of circularly polarized light. We investigated the polarization of light scattered from a sliced biological tissue with various optical configurations. A significant difference between circular polarizations of light scattered from cancerous and healthy tissues is observed, which is sufficient to distinguish a cancerous region. The line-scanning experiments along a region incorporating healthy and cancerous parts indicate step-like behaviors in the degree of circular polarization corresponding to the state of tissues, whether cancerous or normal. An oblique and perpendicular incidence induces different resolutions for identifying cancerous tissues, which indicates that the optical arrangement can be selected according to the priority of resolution.

قيم البحث

اقرأ أيضاً

The circular polarization of light scattered by biological tissues provides valuable information and has been considered as a powerful tool for the diagnosis of tumor tissue. We propose a non-staining, non-invasive and in-vivo cancer diagnosis techni que using an endoscope equipped with circularly polarized light-emitting diodes (spin-LEDs). We studied the scattering process of the circularly polarized light against cell nuclei in pseudo-healthy and cancerous tissues using the existing Monte Carlo method. The calculation results indicate that the resultant circular polarizations of light scattered in pseudo tissues shows clear difference in a wide range of detection angle, and the sampling depth depends on those detection angles. The structure of the endoscope probe comprising spin-LEDs is designed based on the calculation results, providing structural and depth information regarding biological tissues simultaneously.
Chiral four-wave-mixing signals are calculated using the irreducible tensor formalism. Different polarization and crossing angle configurations allow to single out the magnetic dipole and the electric quadrupole interactions. Other configurations can reveal that the chiral interaction occurs at a given step within the nonlinear interaction pathways contributing to the signal. Applications are made to the study of valence excitations of S-ibuprofen by chiral Stimulated X-ray Raman signals at the Carbon K-edge and by chiral visible 2D Electronic Spectroscopy.teraction pathways contributing to the signal.
Resonant angle scanned x-ray photoelectron diffraction (RXPD) allows the determination of the atomic and magnetic structure of surfaces and interfaces. For the case of magnetized nickel the resonant L2 excitation with circularly polarized light yield s electrons with a dichroic signature from which the dipolar part may be retrieved. The corresponding L2MM and L3MM Auger electrons carry different angular momenta since their source waves rotate the dichroic dipole in the electron emission patterns by distinct angles.
This paper focuses on the analytic modelling of responses of cells in the body to ionizing radiation. The related mechanisms are consecutively taken into account and discussed. A model of the dose- and time-dependent adaptive response is considered, for two exposure categories: acute and protracted. In case of the latter exposure, we demonstrate that the response plateaus are expected under the modelling assumptions made. The expected total number of cancer cells as a function of time turns out to be perfectly described by the Gompertz function. The transition from a collection of cancer cells into a tumour is discussed at length. Special emphasis is put on the fact that characterizing the growth of a tumour (i.e., the increasing mass and volume) the use of differential equations cannot properly capture the key dynamics - formation of the tumour must exhibit properties of the phase transition, including self-organization and even self-organized criticality. As an example, a manageable percolation-type phase transition approach is used to address this problem. Nevertheless, general theory of tumour emergence is difficult to work out mathematically because experimental observations are limited to the relatively large tumours. Hence, determination of the conditions around the critical point is uncertain.
In this paper, we discuss biological effects of electromagnetic (EM) fields in the context of cancer biology. In particular, we review the nanomechanical properties of microtubules (MTs), the latter being one of the most successful targets for cancer therapy. We propose an investigation on the coupling of electromagnetic radiation to mechanical vibrations of MTs as an important basis for biological and medical applications. In our opinion optomechanical methods can accurately monitor and control the mechanical properties of isolated MTs in a liquid environment. Consequently, studying nanomechanical properties of MTs may give useful information for future applications to diagnostic and therapeutic technologies involving non-invasive externally applied physical fields. For example, electromagnetic fields or high intensity ultrasound can be used therapeutically avoiding harmful side effects of chemotherapeutic agents or classical radiation therapy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا