ﻻ يوجد ملخص باللغة العربية
The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 {mu}m. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 {mu}m. Observations with different solar zenith angles make it possible to characterize the aerosol layer at different altitudes, revealing a decrease of the particle size of aerosols as altitude increases.
We present spatial and temporal distributions of dust on Mars from Ls = 331 in MY26 until Ls = 80 in MY33 retrieved from the measurements taken by the Planetary Fourier Spectrometer (PFS) aboard Mars Express. In agreement with previous observations,
We investigate the global seasonal variations of near-surface relative humidity and relevant attributes, like temperature and water vapor volume mixing ratio on Mars using calculations from modelled and measurement data. We focus on 2 am local time s
We have produced a multiannual climatology of airborne dust from Martian year 24 to 31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the Martian atmosphere from April 1999 to July 2
This study constrains the lower bound of the scattering phase function of Martian water ice clouds (WICs) through the implementation of a new observation aboard the Mars Science Laboratory (MSL). The Phase Function Sky Survey (PFSS) was a multiple po
In this paper we show that Sun-viewing images obtained by the Mars Science Laboratory (MSL) Navigation Cameras (Navcam) can be used for retrieving the dust optical depth and constrain the aerosol physical properties at Gale Crater by evaluating the s