ﻻ يوجد ملخص باللغة العربية
In this note, we compute the {Sigma}^1(G) invariant when 1 {to} H {to} G {to} K {to} 1 is a short exact sequence of finitely generated groups with K finite. As an application, we construct a group F semidirect Z_2 where F is the R. Thompsons group F and show that F semidirect Z_2 has the R-infinity property while F is not characteristic. Furthermore, we construct a finite extension G with finitely generated commutator subgroup G but has a finite index normal subgroup H with infinitely generated H.
We compute the {Omega}^1(G) invariant when 1 {to} H {to} G {to} K {to} 1 is a split short exact sequence. We use this result to compute the invariant for pure and full braid groups on compact surfaces. Applications to twisted conjugacy classes and to
In this paper, we compute the {Sigma}^n(G) and {Omega}^n(G) invariants when 1 rightarrow H rightarrow G rightarrow K rightarrow 1 is a short exact sequence of finitely generated groups with K finite. We also give sufficient conditions for G to have t
Let $G$ be a finitely generated group that can be written as an extension [ 1 longrightarrow K stackrel{i}{longrightarrow} G stackrel{f}{longrightarrow} Gamma longrightarrow 1 ] where $K$ is a finitely generated group. By a study of the BNS invariant
Bogopolski, Martino and Ventura in [BMV10] introduced a general criteria to construct groups extensions with unsolvable conjugacy problem using short exact sequences. We prove that such extensions have always solvable word problem. This makes the pro
The aim of this paper is to study the $(alpha, gamma)$-prolongation of central extensions. We obtain the obstruction theory for $(alpha, gamma)$-prolongations and classify $(alpha, gamma)$-prolongations thanks to low-dimensional cohomology groups of groups.