ترغب بنشر مسار تعليمي؟ اضغط هنا

The prolongation of central extensions

134   0   0.0 ( 0 )
 نشر من قبل Tien Quang Nguyen
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this paper is to study the $(alpha, gamma)$-prolongation of central extensions. We obtain the obstruction theory for $(alpha, gamma)$-prolongations and classify $(alpha, gamma)$-prolongations thanks to low-dimensional cohomology groups of groups.



قيم البحث

اقرأ أيضاً

158 - Nic Koban , Peter Wong 2011
In this note, we compute the {Sigma}^1(G) invariant when 1 {to} H {to} G {to} K {to} 1 is a short exact sequence of finitely generated groups with K finite. As an application, we construct a group F semidirect Z_2 where F is the R. Thompsons group F and show that F semidirect Z_2 has the R-infinity property while F is not characteristic. Furthermore, we construct a finite extension G with finitely generated commutator subgroup G but has a finite index normal subgroup H with infinitely generated H.
156 - Nic Koban , Peter Wong 2011
We compute the {Omega}^1(G) invariant when 1 {to} H {to} G {to} K {to} 1 is a split short exact sequence. We use this result to compute the invariant for pure and full braid groups on compact surfaces. Applications to twisted conjugacy classes and to finite generation of commutator subgroups are also discussed.
154 - Amnon Yekutieli 2010
We introduce the notion of central extension of gerbes on a topological space. We then show that there are obstruction classes to lifting objects and isomorphisms in a central extension. We also discuss pronilpotent gerbes. These results are used in a subsequent paper to study twisted deformation quantization on algebraic varieties.
165 - Nic Koban , Peter Wong 2012
In this paper, we compute the {Sigma}^n(G) and {Omega}^n(G) invariants when 1 rightarrow H rightarrow G rightarrow K rightarrow 1 is a short exact sequence of finitely generated groups with K finite. We also give sufficient conditions for G to have t he R_{infty} property in terms of {Omega}^n(H) and {Omega}^n(K) when either K is finite or the sequence splits. As an application, we construct a group F rtimes? Z_2 where F is the R. Thompsons group F and show that F rtimes Z_2 has the R_{infty} property while F is not characteristic.
125 - Ellen Henke , Justin Lynd 2017
The Benson-Solomon systems comprise the only known family of simple saturated fusion systems at the prime two that do not arise as the fusion system of any finite group. We determine the automorphism groups and the possible almost simple extensions o f these systems and of their centric linking systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا