ترغب بنشر مسار تعليمي؟ اضغط هنا

Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps

130   0   0.0 ( 0 )
 نشر من قبل Jens Welzel
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the experimental feasibility of quantum simulation with trapped ion crystals, using magnetic field gradients. We describe a micro structured planar ion trap, which contains a central wire loop generating a strong magnetic gradient of about 20 T/m in an ion crystal held about 160 mu m above the surface. On the theoretical side, we extend a proposal about spin-spin interactions via magnetic gradient induced coupling (MAGIC) [Johanning, et al, J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154009]. We describe aspects where planar ion traps promise novel physics: Spin-spin coupling strengths of transversal eigenmodes exhibit significant advantages over the coupling schemes in longitudinal direction that have been previously investigated. With a chip device and a magnetic field coil with small inductance, a resonant enhancement of magnetic spin forces through the application of alternating magnetic field gradients is proposed. Such resonantly enhanced spin-spin coupling may be used, for instance, to create Schrodinger cat states. Finally we investigate magnetic gradient interactions in two-dimensional ion crystals, and discuss frustration effects in such two-dimensional arrangements.

قيم البحث

اقرأ أيضاً

We present a review of dynamics of entanglement in one and two dimensional systems under the effect of external magnetic field and different degrees of anisotropy at zero and finite temperatures. Different techniques for treating the spin systems wit h large Hilbert space dimensions are discussed such as trace minimization algorithm, time-evolution matrix transformation and step by step projection technique.
57 - G. Ciaramicoli , I. Marzoli , 2007
We demonstrate that spin chains are experimentally feasible using electrons confined in micro-Penning traps, supplemented with local magnetic field gradients. The resulting Heisenberg-like system is characterized by coupling strengths showing a dipol ar decay. These spin chains can be used as a channel for short distance quantum communication. Our scheme offers high accuracy in reproducing an effective spin chain with relatively large transmission rate.
Cold atoms coupled to photonic crystals constitute an exciting platform for exploring quantum many-body physics. Here we investigate the strong coupling between atomic internal (spin) degrees of freedom and motion, which arises from spin-dependent fo rces associated with the exchange of guided photons. We show that this system can realize a remarkable and extreme limit of quantum spin-orbital systems, where both the direct spin exchange between neighboring sites and the kinetic energy of the orbital motion vanish. We find that this previously unexplored system has a rich phase diagram of emergent orders, including spatially dimerized spin-entangled pairs, a fluid of composite particles comprised of joint spin-phonon excitations, phonon-induced Neel ordering, and a fractional magnetization plateau associated with trimer formation.
The development of solid-state photonic quantum technologies is of great interest for fundamental studies of light-matter interactions and quantum information science. Diamond has turned out to be an attractive material for integrated quantum informa tion processing due to the extraordinary properties of its colour centres enabling e.g. bright single photon emission and spin quantum bits. To control emitted photons and to interconnect distant quantum bits, micro-cavities directly fabricated in the diamond material are desired. However, the production of photonic devices in high-quality diamond has been a challenge so far. Here we present a method to fabricate one- and two-dimensional photonic crystal micro-cavities in single-crystal diamond, yielding quality factors up to 700. Using a post-processing etching technique, we tune the cavity modes into resonance with the zero phonon line of an ensemble of silicon-vacancy centres and measure an intensity enhancement by a factor of 2.8. The controlled coupling to small mode volume photonic crystal cavities paves the way to larger scale photonic quantum devices based on single-crystal diamond.
146 - H. Ochoa , F. Guinea , V. I. Falko 2013
We propose a theory of spin relaxation of electrons and holes in two-dimensional hexagonal crystals such as atomic layers of transition metal dichalcogenides (MoS2, WSe2, etc). We show that even in intrinsically defectless crystals, their flexural de formations are able to generate spin relaxation of carriers. Based on symmetry analysis, we formulate a generic model for spin-lattice coupling between electrons and flexural deformations, and use it to determine temperature and material-dependent spin lifetimes in atomic crystals in ambient conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا