ترغب بنشر مسار تعليمي؟ اضغط هنا

The US stock market leads the Federal funds rate and Treasury bond yields

243   0   0.0 ( 0 )
 نشر من قبل Wei-Xing Zhou
 تاريخ النشر 2011
  مجال البحث مالية فيزياء
والبحث باللغة English
 تأليف Kun Guo




اسأل ChatGPT حول البحث

Using a recently introduced method to quantify the time varying lead-lag dependencies between pairs of economic time series (the thermal optimal path method), we test two fundamental tenets of the theory of fixed income: (i) the stock market variations and the yield changes should be anti-correlated; (ii) the change in central bank rates, as a proxy of the monetary policy of the central bank, should be a predictor of the future stock market direction. Using both monthly and weekly data, we found very similar lead-lag dependence between the S&P500 stock market index and the yields of bonds inside two groups: bond yields of short-term maturities (Federal funds rate (FFR), 3M, 6M, 1Y, 2Y, and 3Y) and bond yields of long-term maturities (5Y, 7Y, 10Y, and 20Y). In all cases, we observe the opposite of (i) and (ii). First, the stock market and yields move in the same direction. Second, the stock market leads the yields, including and especially the FFR. Moreover, we find that the short-term yields in the first group lead the long-term yields in the second group before the financial crisis that started mid-2007 and the inverse relationship holds afterwards. These results suggest that the Federal Reserve is increasingly mindful of the stock market behavior, seen at key to the recovery and health of the economy. Long-term investors seem also to have been more reactive and mindful of the signals provided by the financial stock markets than the Federal Reserve itself after the start of the financial crisis. The lead of the S&P500 stock market index over the bond yields of all maturities is confirmed by the traditional lagged cross-correlation analysis.



قيم البحث

اقرأ أيضاً

We fill a void in merging empirical and phenomenological characterisation of the dynamical phase transitions in complex systems by identifying three of them on real-life financial markets. We extract and interpret the empirical, numerical, and semi-a nalytical evidences for the existence of these phase transitions, by considering the Frankfurt Stock Exchange (FSE), as a typical example of a financial market of a medium size. Using the canonical object for the graph theory, i.e. the Minimal Spanning Tree (MST) network, we observe: (i) The initial phase transition from the equilibrium to non-equilibrium MST network in its nucleation phase, occurring at some critical time. Coalescence of edges on the FSEs transient leader is observed within the nucleation and is approximately characterized by the Lifsthiz-Slyozov growth exponent; (ii) The nucleation accelerates and transforms to the condensation process, in the second phase transition, forming a logarithmically diverging lambda-peak of short-range order parameters at the subsequent critical time - an analogon of such a transition in superfluidity; (iii) In the third phase transition, the peak logarithmically decreases over three quarters of the year, resulting in a few loosely connected sub-graphs. This peak is reminiscent of a non-equilibrium superstar-like superhub or a `dragon king effect, abruptly accelerating the evolution of the leader company. All these phase transitions are caused by the few richest vertices, which drift towards the leader and provide the most of the edges increasing the leaders degree. Thus, we capture an amazing phenomenon, likely of a more universal character, where a peripheral vertex becomes the one which is over dominating the complex network during an exceptionally long period of time.
169 - T. Gubiec , M. Wilinski 2014
We describe the impact of the intra-day activity pattern on the autocorrelation function estimator. We obtain an exact formula relating estimators of the autocorrelation functions of non-stationary process to its stationary counterpart. Hence, we pro ved that the day seasonality of inter-transaction times extends the memory of as well the process itself as its absolute value. That is, both processes relaxation to zero is longer.
The stock market has been known to form homogeneous stock groups with a higher correlation among different stocks according to common economic factors that influence individual stocks. We investigate the role of common economic factors in the market in the formation of stock networks, using the arbitrage pricing model reflecting essential properties of common economic factors. We find that the degree of consistency between real and model stock networks increases as additional common economic factors are incorporated into our model. Furthermore, we find that individual stocks with a large number of links to other stocks in a network are more highly correlated with common economic factors than those with a small number of links. This suggests that common economic factors in the stock market can be understood in terms of deterministic factors.
We study the behavior of U.S. markets both before and after U.S. Federal Open Market Committee (FOMC) meetings, and show that the announcement of a U.S. Federal Reserve rate change causes a financial shock, where the dynamics after the announcement i s described by an analogue of the Omori earthquake law. We quantify the rate n(t) of aftershocks following an interest rate change at time T, and find power-law decay which scales as n(t-T) (t-T)^-$Omega$, with $Omega$ positive. Surprisingly, we find that the same law describes the rate n(|t-T|) of pre-shocks before the interest rate change at time T. This is the first study to quantitatively relate the size of the market response to the news which caused the shock and to uncover the presence of quantifiable preshocks. We demonstrate that the news associated with interest rate change is responsible for causing both the anticipation before the announcement and the surprise after the announcement. We estimate the magnitude of financial news using the relative difference between the U. S. Treasury Bill and the Federal Funds Effective rate. Our results are consistent with the sign effect, in which bad news has a larger impact than good news. Furthermore, we observe significant volatility aftershocks, confirming a market underreaction that lasts at least 1 trading day.
In this study, we attempted to determine how eigenvalues change, according to random matrix theory (RMT), in stock market data as the number of stocks comprising the correlation matrix changes. Specifically, we tested for changes in the eigenvalue pr operties as a function of the number and type of stocks in the correlation matrix. We determined that the value of the eigenvalue increases in proportion with the number of stocks. Furthermore, we noted that the largest eigenvalue maintains its identical properties, regardless of the number and type, whereas other eigenvalues evidence different features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا