ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental Properties of Cool Stars with Interferometry

338   0   0.0 ( 0 )
 نشر من قبل Tabetha Boyajian
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of fundamental astrophysical properties of nearby, low-mass, K- and M-dwarfs from our DISCOS survey (DIameterS of COol Stars). The principal goal of our study is the determination of linear radii and effective temperatures for these stars. We calculate their radii from angular diameter measurements using the CHARA Array and Hipparcos distances. Combined with bolometric flux measurements based on literature photometry, we use our angular diameter results to calculate their effective surface temperatures. We present preliminary results established on an assortment of empirical relations to the stellar effective temperature and radius that are based upon these measurements. We elaborate on the discrepancy seen between theoretical and observed stellar radii, previously claimed to be related to stellar activity and/or metallicity. Our preliminary conclusion, however, is that convection plays a larger role in the determination of radii of these late-type stars. Understanding the source of the radius disagreement is likely to impact other areas of study for low-mass stars, such as the detection and characterization of extrasolar planets in the habitable zones.

قيم البحث

اقرأ أيضاً

Observations of 48 red-clump stars were obtained in the H band with the PIONIER instrument installed at the Very Large Telescope Interferometer. Limb-darkened angular diameters were measured by fitting radial intensity profile I(r) to square visibili ty measurements. Half the angular diameters determined have formal errors better than 1.2%, while the overall accuracy is better than 2.7%. Average stellar atmospheric parameters (effective temperatures, metallicities and surface gravities) were determined from new spectroscopic observations and literature data and combined with precise Gaia parallaxes to derive a set of fundamental stellar properties. These intrinsic parameters were then fitted to existing isochrone models to infer masses and ages of the stars. The added value from interferometry imposes a better and independent constraint on the R-Teff plane. Our derived values are consistent with previous works, although there is a strong scatter in age between various models. This shows that atmospheric parameters, mainly metallicities and surface gravities, still suffer from a non-accurate determination, limiting constraints on input physics and parameters of stellar evolution models.
High-resolution observations by visible and near-infrared interferometers of both single stars and binaries have made significant contributions to the foundations that underpin many aspects of our knowledge of stellar structure and evolution for cool stars. The CS16 splinter on this topic reviewed contributions of optical interferometry to date, examined highlights of current research, and identified areas for contributions with new observational constraints in the near future.
We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes and high-resolution spectroscopy we derive a full set of near model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power (nu_max) and the large frequency separation (Delta_nu). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to <~4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T_eff = 4600-6200 K of -22+/-32 K (with a scatter of 97K) and -58+/-31 K (with a scatter of 93 K), respectively. Finally we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modelling of individual oscillation frequencies.
The study of magnetic fields of cool chemically peculiar stars with effective temperatures less than 10 000 K is very important to understand the nature of their magnetism. We present new results of a long-term spectroscopic monitoring of the well-kn own magnetic star HD 178892. The analysis of spectra taken with the Russian 6-m telescope has revealed a periodic variation of the surface magnetic field from 17 to 23 kG. A revised rotational period of HD 178892 was extracted from the mean longitudinal field: 8.2549 days. We have continued the study of the components of the magnetic binary BD +40^{circ}175 started by V. Elkin at SAO RAS. Our measurements of magnetically splitted lines in the spectra of each component show the presence of strong magnetic fields in both components. The surface field in the case of the component A was about 14 kG at three different epochs. The component B possesses a slightly weaker field: B_{s} varies from 9 to 11 kG. A preliminary analysis of the chemical abundances allows us to make an assumption about the roAp nature of both components of BD +40^{circ}175.
Stellar models applied to large stellar surveys of the Milky Way need to be properly tested against a sample of stars with highly reliable fundamental stellar parameters. We have established a program aiming to deliver such a sample. We present new f undamental stellar parameters of nine dwarfs that will be used as benchmarks for large stellar surveys. One of these stars is the solar-twin 18Sco, which is one of the Gaia-ESO benchmarks. The goal is to reach a precision of 1% in Teff. This precision is important for accurate determinations of the full set of fundamental parameters and abundances of stars observed by the surveys. We observed HD131156 (xiBoo), HD146233 (18Sco), HD152391, HD173701, HD185395 (thetaCyg), HD186408 (16CygA), HD186427 (16CygB), HD190360 and HD207978 (15Peg) using the high angular resolution optical interferometric instrument PAVO/CHARA. We derived limb-darkening corrections from 3D model atmospheres and determined Teff directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. Surface gravities were estimated from comparisons to Dartmouth stellar evolution model tracks. We collected spectroscopic observations from the ELODIE spectrograph and estimated metallicities ([Fe/H]) from a 1D non-local thermodynamic equilibrium (NLTE) abundance analyses of unblended lines of neutral and singly ionized iron. For eight of the nine stars, we measure the Teff less than 1%, and for one star better than 2%. We determined the median uncertainties in logg and Fe/H as 0.015dex and 0.05dex, respectively. This study presents updated fundamental stellar parameters of nine dwarfs that can be used as a new set of benchmarks. All parameters were based on consistently combining interferometric observations, 3D limb-darkening modelling and spectroscopic analysis. The next paper will extend our sample to metal-rich giants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا