ﻻ يوجد ملخص باللغة العربية
We study the expected variability patterns of blazars within the two-zone acceleration model putting special emphasis on flare shapes and spectral lags. We solve semi-analytically the kinetic equations which describe the particle evolution in the acceleration and radiation zone. We then perturb the solutions by introducing Lorentzian variations in its key parameters and examine the flaring behavior of the system. We apply the above to the X-ray observations of blazar 1ES 1218+304 which exhibited a hard lag behavior during a flaring episode and discuss possibilities of producing it within the context of our model. The steady-state radio to X-rays emission of 1ES 1218+304 can be reproduced with parameters which lie well within the ones generally accepted from blazar modeling. Additionally, we find that the best way to explain its flaring behavior is by varying the rate of particles injected in the acceleration zone.
We have examined 40 NuSTAR light curves (LCs) of five TeV emitting high synchrotron peaked blazars: 1ES 0229+200, Mrk 421, Mrk 501, 1ES 1959+650 and PKS 2155-304. Four of the blazars showed intraday variability in the NuSTAR energy range of 3-79 keV.
The discovery of source states in the X-ray emission of black-hole binaries and neutron-star low-mass X-ray binaries constituted a major step forward in the understanding of the physics of accretion onto compact objects. While there are numerous stud
We present an in-depth and systematic variability study of a sample of 20 powerful blazars, including 12 BL Lacs and 8 flat spectrum radio quasars, applying various analysis tools such as flux distribution, symmetry analysis, and time series analysis
We use optical data from the Palomar Transient Factory (PTF) and the Catalina Real-Time Transient Survey (CRTS) to study the variability of gamma-ray detected and non-detected objects in a large population of active galactic nuclei (AGN) selected fro
The detection of a high-energy neutrino from the flaring blazar TXS 0506+056 and the subsequent discovery of a neutrino excess from the same direction have strengthened the hypothesis that blazars are cosmic neutrino sources. The lack, however, of $g