ترغب بنشر مسار تعليمي؟ اضغط هنا

Connection between optical and gamma-ray variability in blazars

178   0   0.0 ( 0 )
 نشر من قبل Talvikki Hovatta
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use optical data from the Palomar Transient Factory (PTF) and the Catalina Real-Time Transient Survey (CRTS) to study the variability of gamma-ray detected and non-detected objects in a large population of active galactic nuclei (AGN) selected from the Candidate Gamma-Ray Blazar Survey and Fermi Gamma-Ray Space Telescope catalogs. Our samples include 714 sources with PTF data and 1244 sources with CRTS data. We calculate the intrinsic modulation index to quantify the optical variability amplitude in these samples. We find the gamma-ray detected objects to be more variable than the non-detected ones. The flat spectrum radio quasars (FSRQs) are more variable than the BL Lac objects in our sample, but the significance of the difference depends on the sample used. When dividing the objects based on their synchrotron peak frequency, we find the low synchrotron peaked (LSP) objects to be significantly more variable than the high synchrotron peaked (HSP) ones, explaining the difference between the FSRQs and BL Lacs. This could be due to the LSPs being observed near their electron energy peak, while in the HSPs the emission is caused by lower energy electrons, which cool more slowly. We also find a significant correlation between the optical and gamma-ray fluxes that is stronger in the HSP BL Lacs than in the FSRQs. The FSRQs in our sample are also more Compton dominated than the HSP BL Lacs. These findings are consistent with models where the gamma-ray emission of HSP objects is produced by the synchrotron self-Compton mechanism, while the LSP objects need an additional external Compton component that increases the scatter in the flux-flux correlation.



قيم البحث

اقرأ أيضاً

We perform monthly total and polarized intensity imaging of a sample of $gamma$-ray blazars (33 sources) with the Very Long Baseline Array (VLBA) at 43 GHz with the high resolution of 0.1 milliarcseconds. From Summer 2008 to October 2009 several of t hese blazars triggered Astronomical Telegrams due to a high $gamma$-ray state detected by the Fermi Large Area Telescope (LAT): AO 0235+164, 3C 273, 3C 279, PKS 1510-089, and 3C 454.3. We have found that 1) $gamma$-ray flares in these blazars occur during an increase of the flux in the 43 GHz VLBI core; 2) strong $gamma$-ray activity, consisting of several flares of various amplitudes and durations (weeks to months), is simultaneous with the propagation of a superluminal knot in the inner jet, as found previously for BL Lac (Marscher et al. 2008); 3) coincidence of a superluminal knot with the 43 GHz core precedes the most intense $gamma$-ray flare by 36$pm$24 days. Our results strongly support the idea that the most dramatic $gamma$-ray outbursts of blazars originate in the vicinity of the mm-wave core of the relativistic jet. These results are preliminary and should be tested by future monitoring with the VLBA and Fermi.
We present the time variability properties of a sample of six blazars, AO 0235+164, 3C 273, 3C 279, PKS 1510-089, PKS 2155-304, and 3C 454.3, at optical-IR as well as gamma-ray energies. These observations were carried out as a part of the Yale/SMART S program during 2008-2010 that has followed the variations in emission of the bright Fermi-LAT-monitored blazars in the southern sky with closely-spaced observations at BVRJK bands. We find the optical/IR time variability properties of these blazars to be remarkably similar to those at the gamma-ray energies. The power spectral density (PSD) functions of the R-band variability of all six blazars are fit well by simple power-law functions with negative slope such that there is higher amplitude variability on longer timescales. No clear break is identified in the PSD of any of the sources. The average slope of the PSD of R-band variability of these blazars is similar to what was found by the Fermi team for the gamma-ray variability of a larger sample of bright blazars. This is consistent with leptonic models where the optical-IR and gamma-ray emission is generated by the same population of electrons through synchrotron and inverse-Compton processes, respectively. The prominent flares present in the optical-IR as well as the gamma-ray light curves of these blazars are predominantly symmetric, i.e., have similar rise and decay timescales, indicating that the long-term variability is dominated by the crossing time of radiation or a disturbance through the emission region rather than by the acceleration or energy-loss timescales of the radiating electrons. In the blazar 3C 454.3, which has the highest-quality light curves, the location of a large gamma-ray outburst during 2009 December is consistent with being in the jet at ~18 pc from the central engine. This poses strong constraints on the models of high energy emission in the jets of blazars.
We have been using the 0.76-m Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory to optically monitor a sample of 157 blazars that are bright in gamma rays, being detected with high significance ($ge 10sigma$) in one year by the Large Are a Telescope (LAT) on the {it Fermi Gamma-ray Space Telescope}. We attempt to observe each source on a 3-day cadence with KAIT, subject to weather and seasonal visibility. The gamma-ray coverage is essentially continuous. KAIT observations extend over much of the 5-year {it Fermi} mission for several objects, and most have $>100$ optical measurements spanning the last three years. These blazars (flat-spectrum radio quasars and BL~Lac objects) exhibit a wide range of flaring behavior. Using the discrete correlation function (DCF), here we search for temporal relationships between optical and gamma-ray light curves in the 40 brightest sources in hopes of placing constraints on blazar acceleration and emission zones. We find strong optical--gamma-ray correlation in many of these sources at time delays of $sim 1$ to $sim 10$ days, ranging between $-40$ and +30 days. A stacked average DCF of the 40 sources verifies this correlation trend, with a peak above 99% significance indicating a characteristic time delay consistent with 0 days. These findings strongly support the widely accepted leptonic models of blazar emission. However, we also find examples of apparently uncorrelated flares (optical flares with no gamma-ray counterpart and gamma-ray flares with no optical counterpart) that challenge simple, one-zone models of blazar emission. Moreover, we find that flat-spectrum radio quasars tend to have gamma rays leading the optical, while intermediate and high synchrotron peak blazars with the most significant peaks have smaller lags/leads.
We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma- ray--loud and gamma-ray--quiet blazars exhibit systematic differences in their optic al polarization properties. We find that gamma-ray--loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray--quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3{sigma} level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band lu- minosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high synchrotron- peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray--quiet sources show similar median polarization fractions although they are all low synchrotron-peaked. We also find that the random- ness of the polarization angle depends on the synchrotron peak frequency. For high synchrotron-peaked sources it tends to concentrate around preferred directions while for low synchrotron-peaked sources it is more variable and less likely to have a pre- ferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.
Since mid-2007 we have carried out a dedicated long-term monitoring programme at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope. One of the main goals of this programme is to study the relation between the radio and gamma-ray emis sion in blazars and to use it as a tool to locate the site of high energy emission. Using this large sample of objects we are able to characterize the radio variability, and study the significance of correlations between the radio and gamma-ray bands. We find that the radio variability of many sources can be described using a simple power law power spectral density, and that when taking into account the red-noise characteristics of the light curves, cases with significant correlation are rare. We note that while significant correlations are found in few individual objects, radio variations are most often delayed with respect to the gamma-ray variations. This suggests that the gamma-ray emission originates upstream of the radio emission. Because strong flares in most known gamma-ray-loud blazars are infrequent, longer light curves are required to settle the issue of the strength of radio-gamma cross-correlations and establish confidently possible delays between the two. For this reason continuous multiwavelength monitoring over a longer time period is essential for statistical tests of jet emission models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا