ﻻ يوجد ملخص باللغة العربية
The fate of ionizing radiation is vital for understanding cosmic ionization, energy budgets in the interstellar and intergalactic medium, and star formation rate indicators. The low observed escape fractions of ionizing radiation have not been adequately explained, and there is evidence that some starbursts have high escape fractions. We examine the spectral energy distributions of a sample of local star-forming galaxies, containing thirteen local starburst galaxies and ten of their ordinary star-forming counterparts, to determine if there exist significant differences in the fate of ionizing radiation in these galaxies. We find that the galaxy-to-galaxy variations in the SEDs is much larger than any systematic differences between starbursts and non-starbursts. For example, we find no significant differences in the total absorption of ionizing radiation by dust, traced by the 24um, 70um, and 160um MIPS bands of the Spitzer Space Telescope, although the dust in starburst galaxies appears to be hotter than that of non-starburst galaxies. We also observe no excess ultraviolet flux in the GALEX bands that could indicate a high escape fraction of ionizing photons in starburst galaxies. The small H-alpha fractions of the diffuse, warm ionized medium in starburst galaxies are apparently due to temporarily boosted H-alpha luminosity within the star-forming regions themselves, with an independent, constant WIM luminosity. This independence of the WIM and starburst luminosities contrasts with WIM behavior in non-starburst galaxies and underscores our poor understanding of radiation transfer in both ordinary and starburst galaxies.
The Extreme starbursts in the local universe workshop was held at the Insituto de Astrofisica de Andalucia in Granada, Spain on 21-25 June 2010. Bearing in mind the advent of a new generation of facilities such as JWST, Herschel, ALMA, eVLA and eMerl
We compute the escape of ionizing radiation from galaxies in the redshift interval z=4-10, i.e., during and after the epoch of reionization, using a high-resolution set of galaxies, formed in fully cosmological simulations. The simulations invoke ear
We present Chandra X-ray imaging and spectroscopy for 14 quasars in spatially resolved pairs, part of a complete sample of binary quasars with small transverse separations drawn from Sloan Digital Sky Survey (DR6) photometry. We find no significant d
We use WIRC, IR images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources (Zezas et al. 2006) to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR c
We studied the radio properties of very young massive regions of star formation in HII galaxies, with the aim of detecting episodes of recent star formation in an early phase of evolution where the first supernovae start to appear. The observed radio