ترغب بنشر مسار تعليمي؟ اضغط هنا

A Multiwavelength Study of Binary Quasars and Their Environments

91   0   0.0 ( 0 )
 نشر من قبل Paul J. Green
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Chandra X-ray imaging and spectroscopy for 14 quasars in spatially resolved pairs, part of a complete sample of binary quasars with small transverse separations drawn from Sloan Digital Sky Survey (DR6) photometry. We find no significant difference in X-ray properties when compared with large control samples of isolated quasars. We present infrared photometry from our observations with SWIRC at the MMT, and from the WISE Preliminary Data Release, and fit simple spectral energy distributions to all 14 QSOs. We find preliminary evidence that substantial contributions from star formation are required, but possibly no more so than for isolated X-ray-detected QSOs. Sensitive searches of the X-ray images for extended emission, and the optical images for optical galaxy excess show that these binary QSOs are not preferentially found in rich cluster environments. While larger binary QSO samples with richer far-IR and sub-millimeter multiwavelength data might better reveal signatures of merging and triggering, optical color-selection of QSO pairs may be biased against such signatures. X-ray and/or variability selection of QSO pairs, while challenging, should be attempted. We present in our Appendix a primer on X-ray flux and luminosity calculations.



قيم البحث

اقرأ أيضاً

We present the results of a comparison between the environments of 1) a complete sample of 46 southern 2Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7), 2) a complete sample of 20 radio-quiet type-2 quasars (0.3 < z < 0.41), and 3) a con trol sample of 107 quiescent early-type galaxies at 0.2 < z < 0.7 in the Extended Groth Strip (EGS). The environments have been quantified using angular clustering amplitudes (Bgq) derived from deep optical imaging data. Based on these comparisons, we discuss the role of the environment in the triggering of powerful radio-loud and radio-quiet quasars. When we compare the Bgq distributions of the type-2 quasars and quiescent early-type galaxies, we find no significant difference between them. This is consistent with the radio-quiet quasar phase being a short-lived but ubiquitous stage in the formation of all massive early-type galaxies. On the other hand, PRGs are in denser environments than the quiescent population, and this difference between distributions of Bgq is significant at the 3 sigma level. This result supports a physical origin of radio loudness, with high density gas environments favouring the transformation of AGN power into radio luminosity, or alternatively, affecting the properties of the supermassive black holes themselves. Finally, focussing on the radio-loud sources only, we find that the clustering of weak-line radio galaxies (WLRGs) is higher than the strong-line radio galaxies (SLRGs), constituting a 3 sigma result. 82% of the 2Jy WLRGs are in clusters, according to our definition (Bgq > 400) versus only 31% of the SLRGs.
We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z<2.2. Half of these 26 objects are shown to be stars, gala xies, or absorbed quasars. We conclude that the other 13 objects are Active Galactic Nuclei (AGN) with abnormally weak emission features; ten of those 13 are definitively radio-quiet, and, for those with available optical light curves, their level of optical flux variability is consistent with radio-quiet quasars. We cannot exclude the possibility that some of these 13 AGN lie on the extremely radio-faint tail of the BL Lac distribution, but our study generally supports the notion that all BL Lac objects are radio-loud. These radio-quiet AGN appear to have intrinsically weak or absent broad emission line regions, and, based on their X-ray properties, we argue that some are low-redshift analogs to weak line quasars (WLQs). SDSS BL Lac searches are so far the only systematic surveys of the SDSS database capable of recovering such exotic low-redshift WLQs. There are 71 more z<2.2 radio-quiet BL Lac candidates already identified in the SDSS not considered here, and many of those might be best unified with WLQs as well. Future studies combining low- and high-redshift WLQ samples will yield new insight on our understanding of the structure and formation of AGN broad emission line regions.
For the first time spectroscopic galaxy redshift surveys are reaching the scales where galaxies can be studied together with the nearest quasars. This gives an opportunity to study the dependence between the activity of a quasar and its environment i n a more extensive way than before. We study the spatial distribution of galaxies and groups of galaxies in the environments of low redshift quasars in the Sloan Digital Sky Survey (SDSS). Our aim is to understand how the nearby quasars are embedded in the local and global density field of galaxies and how the environment affects quasar activity. We analyse the environments of nearby quasars using number counts of galaxies. We also study the dependence of group properties to their distance to the nearest quasar. The large scale environments are studied by analysing the locations of quasars in the luminosity density field. Our study of the number counts of galaxies in quasar environments shows an underdensity of bright galaxies at a few Mpc from quasars. Also, the groups of galaxies that have a quasar closer than 2Mpc are poorer and less luminous than in average. Our analysis on the luminosity density field shows that quasars clearly avoid rich superclusters. Nearby quasars seem to be located in outskirts of superclusters or in filaments connecting them. Our results suggest that quasar evolution may be affected by density variations both on supercluster scales and in the local environment.
We have investigated the strength of ultraviolet Fe II emission from quasars within the environments of Large Quasar Groups (LQGs) in comparison with quasars elsewhere, for 1.1 <= <z_LQG> <= 1.7, using the DR7QSO catalogue of the Sloan Digital Sky Su rvey. We use the Weymann et al. W2400 equivalent width, defined between the rest-frame continuum-windows 2240-2255 and 2665-2695 Ang., as the measure of the UV Fe II emission. We find a significant shift of the W2400 distribution to higher values for quasars within LQGs, predominantly for those LQGs with 1.1 <= <z_LQG> <= 1.5. There is a tentative indication that the shift to higher values increases with the quasar i magnitude. We find evidence that within LQGs the ultrastrong emitters with W2400 >= 45 Ang. (more precisely, ultrastrong-plus with W2400 >= 44 Ang.) have preferred nearest-neighbour separations of ~ 30-50 Mpc to the adjacent quasar of any W2400 strength. No such effect is seen for the ultrastrong emitters that are not in LQGs. The possibilities for increasing the strength of the Fe II emission appear to be iron abundance, Ly-alpha fluorescence, and microturbulence, and probably all of these operate. The dense environment of the LQGs may have led to an increased rate of star formation and an enhanced abundance of iron in the nuclei of galaxies. Similarly the dense environment may have led to more active blackholes and increased Ly-alpha fluorescence. The preferred nearest-neighbour separation for the stronger emitters would appear to suggest a dynamical component, such as microturbulence. In one particular LQG, the Huge-LQG (the largest structure known in the early universe), six of the seven strongest emitters very obviously form three pairings within the total of 73 members.
We study the particle energy distribution in the cocoon surrounding Cygnus A, using radio images between 151 MHz and 15 GHz and a 200 ks Chandra ACIS-I image. We show that the excess low frequency emission in the the lobe further from Earth cannot be explained by absorption or excess adiabatic expansion of the lobe or a combination of both. We show that this excess emission is consistent with emission from a relic counterlobe and a relic counterjet that are being re-energized by compression from the current lobe. We detect hints of a relic hotspot at the end of the relic X-ray jet in the more distant lobe. We do not detect relic emission in the lobe nearer to Earth as expected from light travel-time effects assuming intrinsic symmetry. We determine that the duration of the previous jet activity phase was slightly less than that of the current jet-active phase. Further, we explain some features observed at 5 and 15 GHz as due to the presence of a relic jet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا