ﻻ يوجد ملخص باللغة العربية
We observe unique absorption resonances in silver/silica multilayer-based epsilon-near-zero (ENZ) metamaterials that are related to radiative bulk plasmon-polariton states of thin-films originally studied by Ferrell (1958) and Berreman (1963). In the local effective medium, metamaterial descrip- tion, the unique effect of the excitation of these microscopic modes is counterintuitive and captured within the complex propagation constant, not the effective dielectric permittivities. Theoretical anal- ysis of the band structure for our metamaterials shows the existence of multiple Ferrell-Berreman branches with slow light characteristics. The demonstration that the propagation constant reveals subtle microscopic resonances can lead to the design of devices where Ferrell-Berreman modes can be exploited for practical applications ranging from plasmonic sensing to imaging and absorption enhancement.
An optical topological transition is defined as the change in the photonic isofrequency surface around epsilon-near-zero (ENZ) frequencies which can considerably change the spontaneous emission of a quantum emitter placed near a metamaterial slab. He
Ultrafast control of light-matter interactions constitutes a crucial feature in view of new technological frontiers of information processing. However, conventional optical elements are either static or feature switching speeds that are extremely low
We investigate non-diffracting hollow-core nonlinear optical waves propagating in a layered nanoscaled metal-dielectric structure characterized by a very small average linear dielectric permittivity (Nonlinear Epsilon-Near-Zero metamaterial). We anal
Near-infrared epsilon-near-zero (ENZ) metamaterial slabs based on silver-germanium (Ag-Ge) multilayers are experimentally demonstrated. Transmission, reflection and absorption spectra are characterized and used to determine the complex refractive ind
Vibrational ultrastrong coupling (USC), where the light-matter coupling strength is comparable to the vibrational frequency of molecules, presents new opportunities to probe the interactions of molecules with zero-point fluctuations, harness cavity-e