ﻻ يوجد ملخص باللغة العربية
We extend our earlier lattice-QCD analysis of heavy-quark correlators to smaller lattice spacings and larger masses to obtain new values for the c mass and QCD coupling, and, for the first time, values for the b mass: m_c(3GeV,n_f=4)=0.986(6)GeV, alpha_msb(M_Z,n_f=5)=0.1183(7), and m_b(10GeV,n_f=5)=3.617(25)GeV. These are among the most accurate determinations by any method. We check our results using a nonperturbative determination of the mass ratio m_b(mu,n_f)/m_c(mu,n_f); the two methods agree to within our 1% errors and taken together imply m_b/m_c=4.51(4). We also update our previous analysis of alpha_msb from Wilson loops to account for revised values for r_1 and r_1/a, finding a new value alpha_msb(M_Z,n_f=5)=0.1184(6); and we update our recent values for light-quark masses from the ratio m_c/m_s. Finally, in the Appendix, we derive a procedure for simplifying and accelerating complicated least-squares fits.
We use lattice QCD simulations, with MILC gluon configurations and HISQ c-quark propagators, to make very precise determinations of moments of charm-quark pseudoscalar, vector and axial-vector correlators. These moments are combined with new four-loo
We present a new lattice QCD analysis of heavy-quark pseudoscalar-pseudoscalar correlators, using gluon configurations from the MILC collaboration that include vacuum polarization from $u$, $d$, $s$ and $c$~quarks($n_f=4$). We extract new values for
We propose a method to use lattice QCD to compute the Borel transform of the vacuum polarization function appearing in the Shifman-Vainshtein-Zakharov (SVZ) QCD sum rule. We construct the spectral sum corresponding to the Borel transform from two-poi
In this Letter, we provide a determination of the coupling constant in three-flavor quantum chromodynamics (QCD), $alpha^{overline{mathrm{MS}}}_s(mu)$, for $overline{mathrm{MS}}$ renormalization scales $mu in (1,,2)$ GeV. The computation uses gauge f
We extract the pion valence quark distribution $q^pi_{rm v}(x)$ from lattice QCD (LQCD) calculated matrix elements of spacelike correlations of one vector and one axial vector current analyzed in terms of QCD collinear factorization, using a new shor