ﻻ يوجد ملخص باللغة العربية
We use lattice QCD simulations, with MILC gluon configurations and HISQ c-quark propagators, to make very precise determinations of moments of charm-quark pseudoscalar, vector and axial-vector correlators. These moments are combined with new four-loop results from continuum perturbation theory to obtain several new determinations of the MSbar mass of the charm quark and of the MSbar coupling. We find m_c(3GeV)=0.986(10)GeV, or, equivalently, m_c(m_c)=1.268(9)GeV, both for n_f=4 flavors; and alpha_msb(3GeV,n_f=4)=0.251(6), or, equivalently, alpha_msb(M_Z,n_f=5)=0.1174(12). The new mass agrees well with results from continuum analyses of the vector correlator using experimental data for e+e- annihilation (instead of using lattice QCD simulations). These lattice and continuum results are the most accurate determinations to date of this mass. Ours is also one of the most accurate determinations of the QCD coupling by any method.
We extend our earlier lattice-QCD analysis of heavy-quark correlators to smaller lattice spacings and larger masses to obtain new values for the c mass and QCD coupling, and, for the first time, values for the b mass: m_c(3GeV,n_f=4)=0.986(6)GeV, alp
We propose a method to use lattice QCD to compute the Borel transform of the vacuum polarization function appearing in the Shifman-Vainshtein-Zakharov (SVZ) QCD sum rule. We construct the spectral sum corresponding to the Borel transform from two-poi
We present a new lattice QCD analysis of heavy-quark pseudoscalar-pseudoscalar correlators, using gluon configurations from the MILC collaboration that include vacuum polarization from $u$, $d$, $s$ and $c$~quarks($n_f=4$). We extract new values for
We extract the pion valence quark distribution $q^pi_{rm v}(x)$ from lattice QCD (LQCD) calculated matrix elements of spacelike correlations of one vector and one axial vector current analyzed in terms of QCD collinear factorization, using a new shor
We determine the mass of the charm quark ($m_c$) from lattice QCD with two flavors of dynamical quarks with a mass around the strange quark. We compare this to a determination in quenched QCD which has the same lattice spacing (0.1 fm). We investigat