ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing the Polarization of a Quantum Field from Stokes Fluctuation

363   0   0.0 ( 0 )
 نشر من قبل Luis L. Sanchez. Soto
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an operational degree of polarization in terms of the variance of the projected Stokes vector minimized over all the directions of the Poincare sphere. We examine the properties of this degree and show that some problems associated with the standard definition are avoided. The new degree of polarization is experimentally determined using two examples: a bright squeezed state and a quadrature squeezed vacuum.

قيم البحث

اقرأ أيضاً

In this paper we study the nonequilibrium evolution of a quantum Brownian oscillator, modeling the internal degree of freedom of a harmonic atom or an Unruh-DeWitt detector, coupled to a nonequilibrium, nonstationary quantum field and inquire whether a fluctuation-dissipation relation can exist after/if it approaches equilibration. This is a nontrivial issue since a squeezed bath field cannot reach equilibration and yet, as this work shows, the system oscillator indeed can, which is a necessary condition for FDRs. We discuss three different settings: A) The bath field essentially remains in a squeezed thermal state throughout, whose squeeze parameter is a mode- and time-independent constant. This situation is often encountered in quantum optics and quantum thermodynamics. B) The field is initially in a thermal state, but subjected to a parametric process leading to mode- and time-dependent squeezing. This scenario is met in cosmology and dynamical Casimir effect. The squeezing in the bath in both types of processes will affect the oscillators nonequilibrium evolution. We show that at late times it approaches equilibration, which warrants the existence of an FDR. The trait of squeezing is marked by the oscillators effective equilibrium temperature, and the factor in the FDR is only related to the stationary component of baths noise kernel. Setting C) is more subtle: A finite system-bath coupling strength can set the oscillator in a squeezed state even the bath field is stationary and does not engage in any parametric process. The squeezing of the system in this case is in general time-dependent but becomes constant when the internal dynamics is fully relaxed. We begin with comments on the broad range of physical processes involving squeezed thermal baths and end with some remarks on the significance of FDRs in capturing the essence of quantum backreaction in nonequilibrium systems.
101 - R. Muci~no , E. Okon , D. Sudarsky 2021
Relational Quantum Mechanics (RQM) is a non-standard interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve t he conceptual problems of standard quantum mechanics. Moreover, RQM has been argued to account for all quantum correlations without invoking non-local effects and, in spite of embracing a fully relational stance, to successfully explain how different observers exchange information. In this work, we carry out a thorough assessment of RQM and its purported achievements. We find that it fails to address the conceptual problems of standard quantum mechanics, and that it leads to serious conceptual problems of its own. We also uncover as unwarranted the claims that RQM can correctly explain information exchange among observers, and that it accommodates all quantum correlations without invoking non-local influences. We conclude that RQM is unsuccessful in its attempt to provide a satisfactory understanding of the quantum world.
The main obstacle for practical quantum technology is the noise, which can induce the decoherence and destroy the potential quantum advantages. The fluctuation of a field, which induces the dephasing of the system, is one of the most common noises an d widely regarded as detrimental to quantum technologies. Here we show, contrary to the conventional belief, the fluctuation can be used to improve the precision limits in quantum metrology for the estimation of various parameters. Specifically, we show that for the estimation of the direction and rotating frequency of a field, the achieved precisions at the presence of the fluctuation can even surpass the highest precision achievable under the unitary dynamics which have been widely taken as the ultimate limit. We provide explicit protocols, which employs the adaptive quantum error correction, to achieve the higher precision limits with the fluctuating fields. Our study provides a completely new perspective on the role of the noises in quantum metrology. It also opens the door for higher precisions beyond the limit that has been believed to be ultimate.
Randomness is a valuable resource in science, cryptography, engineering, and information technology. Quantum-mechanical sources of randomness are attractive because of the indeterminism of individual quantum processes. Here we consider the production of random bits from polarization measurements on photons. We first present a pedagogical discussion of how the quantum randomness inherent in such measurements is connected to quantum coherence, and how it can be quantified in terms of the quantum state and an associated entropy value known as min-entropy. We then explore these concepts by performing a series of single-photon experiments that are suitable for the undergraduate laboratory. We prepare photons in different nonentangled and entangled states, and measure these states tomographically. We use the information about the quantum state to determine, in terms of the min-entropy, the minimum amount of randomness produced from a given photon state by different bit-generating measurements. This is helpful in assessing the presence of quantum randomness and in ensuring the quality and security of the random-bit source.
We propose a novel estimator of the polarization amplitude from a single measurement of its normally distributed $(Q,U)$ Stokes components. Based on the properties of the Rice distribution and dubbed MAS (Modified ASymptotic), it meets several desira ble criteria:(i) its values lie in the whole positive region; (ii) its distribution is continuous; (iii) it transforms smoothly with the signal-to-noise ratio (SNR) from a Rayleigh-like shape to a Gaussian one; (iv) it is unbiased and reaches its components variance as soon as the SNR exceeds 2; (v) it is analytic and can therefore be used on large data-sets. We also revisit the construction of its associated confidence intervals and show how the Feldman-Cousins prescription efficiently solves the issue of classical intervals lying entirely in the unphysical negative domain. Such intervals can be used to identify statistically significant polarized regions and conversely build masks for polarization data. We then consider the case of a general $[Q,U]$ covariance matrix and perform a generalization of the estimator that preserves its asymptotic properties. We show that its bias does not depend on the true polarization angle, and provide an analytic estimate of its variance. The estimator value, together with its variance, provide a powerful point-estimate of the true polarization amplitude that follows an unbiased Gaussian distribution for a SNR as low as 2. These results can be applied to the much more general case of transforming any normally distributed random variable from Cartesian to polar coordinates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا