ﻻ يوجد ملخص باللغة العربية
We present BVI CCD photometry of 10 northern open clusters, Berkeley 43, Berkeley 45, Berkeley 47, NGC 6846, Berkeley 49, Berkeley 51, Berkeley 89, Berkeley 91, Tombaugh 4 and Berkeley 9, and estimate their fundamental parameters. Eight of the clusters are located in the first galactic quadrant and 2 are in the second. This is the first optical photometry for 8 clusters. All of them are embedded in rich galactic fields and have large reddening towards them (E(B-V) = 1.0 - 2.3 mag). There is a possibility that some of these difficult-to-study clusters may be asterisms rather than physical systems, but assuming they are physical clusters, we find that 8 of them are located beyond 2 kpc, and 6 clusters (60% of the sample) are located well above or below the Galactic plane. Seven clusters have ages 500 Myr or less and the other 3 are 1 Gyr or more in age. This sample of clusters has increased the optical photometry of clusters in the second half of the first galactic quadrant, beyond 2 kpc, from 10 to 15. NGC 6846 is found to be one of the most distant clusters in this region of the Galaxy.
Thanks to modern understanding of stellar evolution, we can accurately measure the age of Open Clusters (OCs). Given their position, they are ideal tracers of the Galactic disc. Gaia data release 2, besides providing precise parallaxes, led to the de
Our knowledge of stellar evolution and of the structure and chemical evolution of the Galactic disk largely builds on the study of open star clusters. Because of their crucial role in these relevant topics, large homogeneous catalogues of open cluste
We present high-quality CCD photometry in the Washington system C and T1 passbands down to T1 ~ 19.5 mag in the fields of 10 Galactic open clusters (OCs) or candidates projected close to the Galactic plane, namely: ESO 313-SC03, BH 54, Ruprecht 87, E
We present the results of CCD $UBV$ photometric and spectroscopic observations of the open cluster NGC 225. In order to determine the structural parameters of NGC 225, we calculated the stellar density profile in the clusters field. We estimated the
Base on Gaia Second Data Release and the combination of nonparametric bivariate density estimation with the least square ellipse fitting, we derive the shape parameters of the sample clusters. By analyzing the dislocation of the sample clusters, the