ترغب بنشر مسار تعليمي؟ اضغط هنا

On the assessment of the nature of open star clusters and the determination of their basic parameters with limited data

102   0   0.0 ( 0 )
 نشر من قبل Giovanni Carraro dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Giovanni Carraro




اسأل ChatGPT حول البحث

Our knowledge of stellar evolution and of the structure and chemical evolution of the Galactic disk largely builds on the study of open star clusters. Because of their crucial role in these relevant topics, large homogeneous catalogues of open cluster parameters are highly desirable. Although efforts have been made to develop automatic tools to analyse large numbers of clusters, the results obtained so far vary from study to study, and sometimes are very contradictory when compared to dedicated studies of individual clusters. In this work we highlight the common causes of these discrepancies for some open clusters, and show that at present dedicated studies yield a much better assessment of the nature of star clusters, even in the absence of ideal data-sets. We make use of deep, wide-field, multi-colour photometry to discuss the nature of six strategically selected open star clusters: Trumpler~22, Lynga~6, Hogg~19, Hogg~21, Pismis~10 and Pismis~14. We have precisely derived their basic parameters by means of a combination of star counts and photometric diagrams. Trumpler~22 and Lynga~6 are included in our study because they are widely known, and thus provided a check of our data and methodology. The remaining four clusters are very poorly known, and their available parameters have been obtained using automatic tools only. Our results are in some cases in severe disagreement with those from automatic surveys.



قيم البحث

اقرأ أيضاً

We present BVI CCD photometry of 10 northern open clusters, Berkeley 43, Berkeley 45, Berkeley 47, NGC 6846, Berkeley 49, Berkeley 51, Berkeley 89, Berkeley 91, Tombaugh 4 and Berkeley 9, and estimate their fundamental parameters. Eight of the cluste rs are located in the first galactic quadrant and 2 are in the second. This is the first optical photometry for 8 clusters. All of them are embedded in rich galactic fields and have large reddening towards them (E(B-V) = 1.0 - 2.3 mag). There is a possibility that some of these difficult-to-study clusters may be asterisms rather than physical systems, but assuming they are physical clusters, we find that 8 of them are located beyond 2 kpc, and 6 clusters (60% of the sample) are located well above or below the Galactic plane. Seven clusters have ages 500 Myr or less and the other 3 are 1 Gyr or more in age. This sample of clusters has increased the optical photometry of clusters in the second half of the first galactic quadrant, beyond 2 kpc, from 10 to 15. NGC 6846 is found to be one of the most distant clusters in this region of the Galaxy.
Although they are the main constituents of the Galactic disk population, for half of the open clusters in the Milky Way reported in the literature nothing is known except the raw position and an approximate size. The main goal of this study is to det ermine a full set of uniform spatial, structural, kinematic, and astrophysical parameters for as many known open clusters as possible. On the basis of stellar data from PPMXL and 2MASS, we used a dedicated data-processing pipeline to determine kinematic and photometric membership probabilities for stars in a cluster region. For an input list of 3784 targets from the literature, we confirm that 3006 are real objects, the vast majority of them are open clusters, but associations and globular clusters are also present. For each confirmed object we determined the exact position of the cluster centre, the apparent size, proper motion, distance, colour excess, and age. For about 1500 clusters, these basic astrophysical parameters have been determined for the first time. For the bulk of the clusters we also derived the tidal radius. We estimated additionally average radial velocities for more than 30% of the confirmed clusters. The present sample (called MWSC) reaches both the central parts of the Milky Way and its outer regions. It is almost complete up to 1.8 kpc from the Sun and also covers neighbouring spiral arms. However, for a small subset of the oldest open clusters ($log t gtrsim 9$) we found some evidence of incompleteness within about 1 kpc from the Sun.
54 - J. Echevarria 2006
High-dispersion spectroscopy of EY Cyg obtained from data spanning twelve years show, for the first time, the radial velocity curves from both emission and absorption line systems, yielding semi-amplitudes K_{em}=24+/- 4 km s^-1 and K_{abs}=54+/- 2 k m s^-1. The orbital period of this system is found to be 0.4593249(1)d. The masses of the stars, their mass ratio and their separation are found to be M_1 sin^3 i = 0.015+/-0.002 M_sun, M_2 sin^3 i = 0.007+/-0.002 M_sun, q = K_1/K_2 = M_2/M_1 = 0.44+/-0.02 and a sin i = 0.71+/-0.04 R_sun. We also found that the spectral type of the secondary star is around K0,consistent with an early determination by Kraft(1962). From the spectral type of the secondary star and simple comparisons with single main sequence stars, we conclude that the radius of the secondary star is about 30 per cent larger than a main sequence star of the same mass. We also present VRI CCD photometric observations, some of them simultaneous with the spectroscopic runs. The photometric data shows several light modulations, including a sinusoidal behaviour with twice the frequency of the orbital period, characteristic of the modulation coming from an elongated, irradiated secondary star. Low and high states during quiescence are also detected and discussed. From several constrains, we obtain tight limits for the inclination angle of the binary system between 13 and 15 degrees, with a best value of 14 degrees obtained from the sinusoidal light curve analysis. From the above results we derive masses M_1 = 1.10+/-0.09 M_sun, M_2 = 0.49+/-0.09 M_sun, and a binary separation a = 2.9+/- 0.1 R_sun.
The structural and dynamical properties of star clusters are generally derived by means of the comparison between steady-state analytic models and the available observables. With the aim of studying the biases of this approach, we fitted different an alytic models to simulated observations obtained from a suite of direct N-body simulations of star clusters in different stages of their evolution and under different levels of tidal stress to derive mass, mass function and degree of anisotropy. We find that masses can be under/over-estimated up to 50% depending on the degree of relaxation reached by the cluster, the available range of observed masses and distances of radial velocity measures from the cluster center and the strength of the tidal field. The mass function slope appears to be better constrainable and less sensitive to model inadequacies unless strongly dynamically evolved clusters and a non-optimal location of the measured luminosity function are considered. The degree and the characteristics of the anisotropy developed in the N-body simulations are not adequately reproduced by popular analytic models and can be detected only if accurate proper motions are available. We show how to reduce the uncertainties in the mass, mass-function and anisotropy estimation and provide predictions for the improvements expected when Gaia proper motions will be available in the near future.
Context: To investigate how the content of massive OB stars affects the long-term evolution of young open clusters and their tidal streams, and how such an effect influences the constraint of initial conditions by looking at the present-day observati ons. Aims: OB stars are typically in binaries, have a strong wind mass loss during the first few Myr, and many become black holes. These affect the dynamical evolution of an open star cluster and impact its dissolution in a given Galactic potential. We investigate the correlation between the mass of OB stars and the observational properties of open clusters. Hyades-like star clusters are well represented in the Solar neighborhood and thus allow comparisons with observational data. Methods: We perform a large number of star-by-star numerical $N$-body simulations of Hyades-like star clusters by using the high-performance $N$-body code textsc{petar} combined with textsc{galpy}. We also developed the tool to transfer the simulation data to mock observations of Gaia. Results: We find that OB stars and black holes have a major effect on star cluster evolution. Star clusters with the same initial conditions, but a different initial content of OB stars, follow very different evolutionary paths. Thus, the initial total mass and radius of an observed star cluster cannot be unambiguously determined unless the initial content of OB stars is known. We show that the stellar counts in the corresponding tidal tails, that can be identified in the Gaia data, help to resolve this issues. We thus emphasise the importance of exploring not only star-clusters, but also their corresponding tidal tails. These findings are relevant for studies of the formation of massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا