ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy dissipation and resolution of steep gradients in one-dimensional Burgers flows

155   0   0.0 ( 0 )
 نشر من قبل Chuong Tran
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Travelling-wave solutions of the inviscid Burgers equation having smooth initial wave profiles of suitable shapes are known to develop shocks (infinite gradients) in finite times. Such singular solutions are characterized by energy spectra that scale with the wave number $k$ as $k^{-2}$. **** In this study, we carry out an analysis which verifies the dynamical features described above and derive upper bounds for $epsilon$ and $N$. It is found that $epsilon$ satisfies $epsilon le u^{2alpha-1} orm{u_*}_infty^{2(1-alpha)} orm{(-Delta)^{alpha/2}u_*}^2$, where $alpha<1$ and $u_*=u(x,t_*)$ is the velocity field at $t=t_*$. Given $epsilon>0$ in the limit $ uto0$, this implies that the energy spectrum remains no steeper than $k^{-2}$ in that limit. For the critical $k^{-2}$ scaling, the bound for $epsilon$ reduces to $epsilonlesqrt{3}k_0 orm{u_0}_infty orm{u_0}^2$, where $k_0$ marks the lower end of the inertial range and $u_0=u(x,0)$. This implies $Nlesqrt{3}L orm{u_0}_infty/ u$, where $L$ is the domain size, which is shown to coincide with a rigorous estimate for the number of degrees of freedom defined in terms of local Lyapunov exponents. We demonstrate both analytically and numerically an instance where the $k^{-2}$ scaling is uniquely realizable. The numerics also return $epsilon$ and $t_*$, consistent with analytic values derived from the corresponding limiting weak solution.

قيم البحث

اقرأ أيضاً

The goal of this study is to analyze the fine structure of nonlinear modal interactions in different 1D Burgers and 3D Navier-Stokes flows. This analysis is focused on preferential alignments characterizing the phases of Fourier modes participating i n triadic interactions, which are key to determining the nature of energy fluxes between different scales. We develop novel diagnostic tools designed to probe the level of coherence among triadic interactions realizing different flow scenarios. We consider extreme 1D viscous Burgers flows and 3D Navier-Stokes flows which are complemented by singularity-forming inviscid Burgers flows as well as viscous Burgers flows and Navier-Stokes flows corresponding to generic turbulent and simple unimodal initial data, such as the Taylor-Green vortex. The main finding is that while the extreme viscous Burgers and Navier-Stokes flows reveal the same relative level of enstrophy amplification by nonlinear effects, this behaviour is realized via modal interactions with vastly different levels of coherence. In the viscous Burgers flows the flux-carrying triads have phase values which saturate the nonlinearity thereby maximizing the energy flux towards small scales. On the other hand, in 3D Navier-Stokes flows with the extreme initial data the energy flux to small scales is realized by a very small subset of helical triads. The second main finding concerns the role of initial coherence. Comparison of the flows resulting from the extreme and generic initial conditions shows striking similarities between these two types of flows, for the 1D viscous Burgers equation as well as the 3D Navier-Stokes equation.
119 - Gilbert Zalczer (SPEC , CEA , CNRS 2016
An original experimental setup has been elaborated in order to get a better view of turbulent flows in a von Karman geometry. The availability of a very fast camera allowed to follow in time the evolution of the flows. A surprising finding is that th e development of smaller whorls ceases earlier than expected and the aspect of the flows remains the same above Reynolds number of a few thousand. This fact provides an explanation of the constancy of the reduced dissipation in the same range without the need of singularity. Its cause could be in relation with the same type of behavior observed in a rotating frame.
Laboratory experiments were conducted to study heat transport characteristics in a nonhomogeneously heated fluid annulus subjected to rotation along the vertical axis (z). The nonhomogeneous heating was obtained by imposing radial and vertical temper ature gradient ({Delta}T). The parameter range for this study was Rayleigh number, Ra=2.43x10^8-3.66x10^8, and Taylor number, Ta=6.45x10^8-27x10^8. The working fluid was water with a Prandtl number, Pr=7. Heat transport was measured for varying rotation rates ({Omega}) for fixed values of {Delta}T. The Nusselt number, Nu, plotted as a function of Ta distinctly showed the effect of rotation on heat transport. In general, Nu was found to have a larger value for non-rotating convection. This could mean an interplay of columnar plumes and baroclinic wave in our system as also evident from temperature measurements. Laser based imaging at a single vertical plane also showed evidence of such flow structure.
We observe the emergence of strong vertical drafts in direct numerical simulations of the Boussinesq equations in a range of parameters of geophysical interest. These structures, which appear intermittently in space and time, generate turbulence and enhance kinetic and potential energy dissipation, providing an explanation for the observed variability of the local energy dissipation in the ocean and the modulation of its probability distribution function. We show how, due to the extreme drafts, in runs with Froude numbers observable in oceans, roughly $10%$ of the domain flow can account for up to $50%$ of the total volume dissipation, consistently with recent estimates based on oceanic models.
The hydrodynamics of a liquid-vapour interface in contact with an heterogeneous surface is largely impacted by the presence of defects at the smaller scales. Such defects introduce morphological disturbances on the contact line and ultimately determi ne the force exerted on the wedge of liquid in contact with the surface. From the mathematical point of view, defects introduce perturbation modes, whose space-time evolution is governed by the interfacial hydrodynamic equations of the contact line. In this paper we derive the response function of the contact line to such generic perturbations. The contact line response may be used to design simplified 1+1 dimensional models accounting for the complexity of interfacial flows coupled to nanoscale defects, yet offering a more tractable mathematical framework to include thermal fluctuations and explore thermally activated contact line motion through a disordered energy landscape.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا