ﻻ يوجد ملخص باللغة العربية
The goal of this study is to analyze the fine structure of nonlinear modal interactions in different 1D Burgers and 3D Navier-Stokes flows. This analysis is focused on preferential alignments characterizing the phases of Fourier modes participating in triadic interactions, which are key to determining the nature of energy fluxes between different scales. We develop novel diagnostic tools designed to probe the level of coherence among triadic interactions realizing different flow scenarios. We consider extreme 1D viscous Burgers flows and 3D Navier-Stokes flows which are complemented by singularity-forming inviscid Burgers flows as well as viscous Burgers flows and Navier-Stokes flows corresponding to generic turbulent and simple unimodal initial data, such as the Taylor-Green vortex. The main finding is that while the extreme viscous Burgers and Navier-Stokes flows reveal the same relative level of enstrophy amplification by nonlinear effects, this behaviour is realized via modal interactions with vastly different levels of coherence. In the viscous Burgers flows the flux-carrying triads have phase values which saturate the nonlinearity thereby maximizing the energy flux towards small scales. On the other hand, in 3D Navier-Stokes flows with the extreme initial data the energy flux to small scales is realized by a very small subset of helical triads. The second main finding concerns the role of initial coherence. Comparison of the flows resulting from the extreme and generic initial conditions shows striking similarities between these two types of flows, for the 1D viscous Burgers equation as well as the 3D Navier-Stokes equation.
This investigation concerns a systematic search for potentially singular behavior in 3D Navier-Stokes flows. Enstrophy serves as a convenient indicator of the regularity of solutions to the Navier Stokes system --- as long as this quantity remains fi
Whether the 3D incompressible Navier-Stokes equations can develop a finite time singularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the 3D incompre
We investigate the spatio-temporal structure of the most likely configurations realising extremely high vorticity or strain in the stochastically forced 3D incompressible Navier-Stokes equations. Most likely configurations are computed by numerically
This paper presents a low-communication-overhead parallel method for solving the 3D incompressible Navier-Stokes equations. A fully-explicit projection method with second-order space-time accuracy is adopted. Combined with fast Fourier transforms, th
We introduce a model of interacting singularities of Navier-Stokes, named pin,cons. They follow a Hamiltonian dynamics, obtained by the condition that the velocity field around these singularities obeys locally Navier-Stokes equations. This model can