ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy and Mass Assembly (GAMA): Optimal Tiling of Dense Surveys with a Multi-Object Spectrograph

105   0   0.0 ( 0 )
 نشر من قبل Aaron Robotham
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A heuristic greedy algorithm is developed for efficiently tiling spatially dense redshift surveys. In its first application to the Galaxy and Mass Assembly (GAMA) redshift survey we find it rapidly improves the spatial uniformity of our data, and naturally corrects for any spatial bias introduced by the 2dF multi object spectrograph. We make conservative predictions for the final state of the GAMA redshift survey after our final allocation of time, and can be confident that even if worse than typical weather affects our observations, all of our main survey requirements will be met.



قيم البحث

اقرأ أيضاً

Using the complete GAMA-I survey covering ~142 sq. deg. to r=19.4, of which ~47 sq. deg. is to r=19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been te sted extensively on one family of mock GAMA lightcones, constructed from Lambda-CDM N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14,388 galaxy groups (with multiplicity >= 2$), including 44,186 galaxies out of a possible 110,192 galaxies, implying ~40% of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with 5 or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin.
153 - A. M. Hopkins 2013
The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ~300000 galaxies over 280 square degrees, to a limiting magnitude of r_pet < 19.8 mag. The target galaxies are distributed over 0<z<0.5 with a median redshift of z~0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z=1. The redshift accuracy ranges from sigma_v~50km/s to sigma_v~100km/s depending on the signal-to-noise of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750<lambda<8850 A at a resolution of R~1300. The final flux calibration is typically accurate to 10-20%, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterised through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [NII]/Halpha vs [OIII]/Hbeta spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.
In order to generate credible 0.1-2 {mu}m SEDs, the GAMA project requires many Gigabytes of imaging data from a number of instruments to be re-processed into a standard format. In this paper we discuss the software infrastructure we use, and create s elf-consistent ugrizYJHK photometry for all sources within the GAMA sample. Using UKIDSS and SDSS archive data, we outline the pre-processing necessary to standardise all images to a common zeropoint, the steps taken to correct for seeing bias across the dataset, and the creation of Gigapixel-scale mosaics of the three 4x12 deg GAMA regions in each filter. From these mosaics, we extract source catalogues for the GAMA regions using elliptical Kron and Petrosian matched apertures. We also calculate Sersic magnitudes for all galaxies within the GAMA sample using SIGMA, a galaxy component modelling wrapper for GALFIT 3. We compare the resultant photometry directly, and also calculate the r band galaxy LF for all photometric datasets to highlight the uncertainty introduced by the photometric method. We find that (1) Changing the object detection threshold has a minor effect on the best-fitting Schechter parameters of the overall population (M* +/- 0.055mag, {alpha} +/- 0.014, {Phi}* +/- 0.0005 h^3 Mpc^{-3}). (2) An offset between datasets that use Kron or Petrosian photometry regardless of the filter. (3) The decision to use circular or elliptical apertures causes an offset in M* of 0.20mag. (4) The best-fitting Schechter parameters from total-magnitude photometric systems (such as SDSS modelmag or Sersic magnitudes) have a steeper faint-end slope than photometry dependent on Kron or Petrosian magnitudes. (5) Our Universes total luminosity density, when calculated using Kron or Petrosian r-band photometry, is underestimated by at least 15%.
138 - D. J. Farrow 2015
We measure the projected 2-point correlation function of galaxies in the 180 deg$^2$ equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and z=0.5. To do this we further develop the Cole (2011) method of produ cing suitable random catalogues for the calculation of correlation functions. We find that more r-band luminous, more massive and redder galaxies are more clustered. We also find that red galaxies have stronger clustering on scales less than ~3 $h^{-1}$ Mpc. We compare to two differe
In this work we investigate in detail the effects local environment (groups and pairs) has on galaxies with stellar mass similar to the Milky-Way (L* galaxies). A volume limited sample of 6,150 galaxies is classified to determine emission features, m orphological type and presence of a disk. This sample allows for characteristics of galaxies to be isolated (e.g. stellar mass and group halo mass), and their codependencies determined. We observe that galaxy-galaxy interactions play the most important role in shaping the evolution within a group halo, the main role of halo mass is in gathering the galaxies together to encourage such interactions. Dominant pair galaxies find their overall star formation enhanced when the pairs mass ratio is close to 1, otherwise we observe the same galaxies as we would in an unpaired system. The minor galaxy in a pair is greatly affected by its companion galaxy, and whilst the star forming fraction is always suppressed relative to equivalent stellar mass unpaired galaxies, it becomes lower still when the mass ratio of a pair system increases. We find that, in general, the close galaxy-galaxy interaction rate drops as a function of halo mass for a given amount of stellar mass. We find evidence of a local peak of interactions for Milky-Way stellar mass galaxies in Milky-Way halo mass groups. Low mass halos, and in particular Local Group mass halos, are an important environment for understanding the typical evolutionary path of a unit of stellar mass. We find compelling evidence for galaxy conformity in both groups and pairs, where morphological type conformity is dominant in groups, and emission class conformity is dominant in pairs. This suggests that group scale conformity is the result of many galaxy encounters over an extended period of time, whilst pair conformity is a fairly instantaneous response to a transitory interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا