ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy and Mass Assembly (GAMA): Projected Galaxy Clustering

139   0   0.0 ( 0 )
 نشر من قبل Daniel Farrow Dr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. J. Farrow




اسأل ChatGPT حول البحث

We measure the projected 2-point correlation function of galaxies in the 180 deg$^2$ equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and z=0.5. To do this we further develop the Cole (2011) method of producing suitable random catalogues for the calculation of correlation functions. We find that more r-band luminous, more massive and redder galaxies are more clustered. We also find that red galaxies have stronger clustering on scales less than ~3 $h^{-1}$ Mpc. We compare to two differe



قيم البحث

اقرأ أيضاً

We explore the clustering of galaxy groups in the Galaxy and Mass Assembly (GAMA) survey to investigate the dependence of group bias and profile on separation scale and group mass. Due to the inherent uncertainty in estimating the group selection fun ction, and hence the group auto-correlation function, we instead measure the projected galaxy--group cross-correlation function. We find that the group profile has a strong dependence on scale and group mass on scales $r_bot lesssim 1 h^{-1} mathrm{Mpc}$. We also find evidence that the most massive groups live in extended, overdense, structures. In the first application of marked clustering statistics to groups, we find that group-mass marked clustering peaks on scales comparable to the typical group radius of $r_bot approx 0.5 h^{-1} mathrm{Mpc}$. While massive galaxies are associated with massive groups, the marked statistics show no indication of galaxy mass segregation within groups. We show similar results from the IllustrisTNG simulations and the L-Galaxies model, although L-Galaxies shows an enhanced bias and galaxy mass dependence on small scales.
We use a highly complete subset of the GAMA-II redshift sample to fully describe the stellar mass dependence of close-pairs and mergers between 10^8 Msun and 10^12 Msun. Using the analytic form of this fit we investigate the total stellar mass accret ing onto more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging onto more massive companions is 2.0%-5.6%. Using the GAMA-II data we see no significant evidence for a change in the close-pair fraction between redshift $z = 0.05-0.2$. However, we find a systematically higher fraction of galaxies in similar mass close-pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function $gamma_M =A(1+z)m$ to predict the major close-pair fraction, we find fitting parameters of $A = 0.021 pm 0.001$ and $m = 1.53 pm 0.08$, which represents a higher low-redshift normalisation and shallower power-law slope than recent literature values. We find that the relative importance of in-situ star-formation versus galaxy merging is inversely correlated, with star-formation dominating the addition of stellar material below Mstar and merger accretion events dominating beyond Mstar. We find mergers have a measurable impact on the whole extent of the GSMF, manifest as a deepening of the dip in the GSMF over the next Gyr and an increase in Mstar by as much as 0.01-0.05 dex.
We report an expanded sample of visual morphological classifications from the Galaxy and Mass Assembly (GAMA) survey phase two, which now includes 7,556 objects (previously 3,727 in phase one). We define a local (z <0.06) sample and classify galaxies into E, S0-Sa, SB0-SBa, Sab-Scd, SBab-SBcd, Sd-Irr, and little blue spheroid types. Using these updated classifications, we derive stellar mass function fits to individual galaxy populations divided both by morphological class and more general spheroid- or disk-dominated categories with a lower mass limit of log(Mstar/Msun) = 8 (one dex below earlier morphological mass function determinations). We find that all individual morphological classes and the combined spheroid-/bulge-dominated classes are well described by single Schechter stellar mass function forms. We find that the total stellar mass densities for individual galaxy populations and for the entire galaxy population are bounded within our stellar mass limits and derive an estimated total stellar mass density of rho_star = 2.5 x 10^8 Msun Mpc^-3 h_0.7, which corresponds to an approximately 4% fraction of baryons found in stars. The mass contributions to this total stellar mass density by galaxies that are dominated by spheroidal components (E and S0-Sa classes) and by disk components (Sab-Scd and Sd-Irr classes) are approximately 70% and 30%, respectively.
The Galaxy And Mass Assembly (GAMA) survey furnishes a deep redshift catalog that, when combined with the Wide-field Infrared Explorer ($WISE$), allows us to explore for the first time the mid-infrared properties of $> 110, 000$ galaxies over 120 deg $^2$ to $zsimeq 0.5$. In this paper we detail the procedure for producing the matched GAMA-$WISE$ catalog for the G12 and G15 fields, in particular characterising and measuring resolved sources; the complete catalogs for all three GAMA equatorial fields will be made available through the GAMA public releases. The wealth of multiwavelength photometry and optical spectroscopy allows us to explore empirical relations between optically determined stellar mass (derived from synthetic stellar population models) and 3.4micron and 4.6micron WISE measurements. Similarly dust-corrected Halpha-derived star formation rates can be compared to 12micron and 22micron luminosities to quantify correlations that can be applied to large samples to $z<0.5$. To illustrate the applications of these relations, we use the 12micron star formation prescription to investigate the behavior of specific star formation within the GAMA-WISE sample and underscore the ability of WISE to detect star-forming systems at $zsim0.5$. Within galaxy groups (determined by a sophisticated friends-of-friends scheme), results suggest that galaxies with a neighbor within 100$,h^{-1} $kpc have, on average, lower specific star formation rates than typical GAMA galaxies with the same stellar mass.
Using the complete GAMA-I survey covering ~142 sq. deg. to r=19.4, of which ~47 sq. deg. is to r=19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been te sted extensively on one family of mock GAMA lightcones, constructed from Lambda-CDM N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14,388 galaxy groups (with multiplicity >= 2$), including 44,186 galaxies out of a possible 110,192 galaxies, implying ~40% of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with 5 or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا